HOME
*





Cartan–Karlhede Algorithm
The Cartan–Karlhede algorithm is a procedure for completely classifying and comparing Riemannian manifolds. Given two Riemannian manifolds of the same dimension, it is not always obvious whether they are locally isometric. Élie Cartan, using his exterior calculus with his method of moving frames, showed that it is always possible to compare the manifolds. Carl Brans developed the method further, and the first practical implementation was presented by in 1980. The main strategy of the algorithm is to take covariant derivatives of the Riemann tensor. Cartan showed that in ''n'' dimensions at most ''n''(''n''+1)/2 differentiations suffice. If the Riemann tensor and its derivatives of the one manifold are algebraically compatible with the other, then the two manifolds are isometric. The Cartan–Karlhede algorithm therefore acts as a kind of generalization of the Petrov classification. The potentially large number of derivatives can be computationally prohibitive. The algori ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Riemannian Manifold
In differential geometry, a Riemannian manifold or Riemannian space , so called after the German mathematician Bernhard Riemann, is a real manifold, real, smooth manifold ''M'' equipped with a positive-definite Inner product space, inner product ''g''''p'' on the tangent space ''T''''p''''M'' at each point ''p''. The family ''g''''p'' of inner products is called a metric tensor, Riemannian metric (or Riemannian metric tensor). Riemannian geometry is the study of Riemannian manifolds. A common convention is to take ''g'' to be Smoothness, smooth, which means that for any smooth coordinate chart on ''M'', the ''n''2 functions :g\left(\frac,\frac\right):U\to\mathbb are smooth functions. These functions are commonly designated as g_. With further restrictions on the g_, one could also consider Lipschitz continuity, Lipschitz Riemannian metrics or Measurable function, measurable Riemannian metrics, among many other possibilities. A Riemannian metric (tensor) makes it possible to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lorentz Group
In physics and mathematics, the Lorentz group is the group of all Lorentz transformations of Minkowski spacetime, the classical and quantum setting for all (non-gravitational) physical phenomena. The Lorentz group is named for the Dutch physicist Hendrik Lorentz. For example, the following laws, equations, and theories respect Lorentz symmetry: * The kinematical laws of special relativity * Maxwell's field equations in the theory of electromagnetism * The Dirac equation in the theory of the electron * The Standard Model of particle physics The Lorentz group expresses the fundamental symmetry of space and time of all known fundamental laws of nature. In small enough regions of spacetime where gravitational variances are negligible, physical laws are Lorentz invariant in the same manner as special relativity. Basic properties The Lorentz group is a subgroup of the Poincaré group—the group of all isometries of Minkowski spacetime. Lorentz transformations are, precisely, iso ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Frame Fields In General Relativity
A frame field in general relativity (also called a tetrad or vierbein) is a set of four pointwise-orthonormal vector fields, one timelike and three spacelike, defined on a Lorentzian manifold that is physically interpreted as a model of spacetime. The timelike unit vector field is often denoted by \vec_0 and the three spacelike unit vector fields by \vec_1, \vec_2, \, \vec_3. All tensorial quantities defined on the manifold can be expressed using the frame field and its dual coframe field. Frame were introduced into general relativity by Albert Einstein in 1928 and by Hermann Weyl in 1929.Hermann Weyl "Elektron und Gravitation I", ''Zeitschrift Physik'', 56, p330–352, 1929. The index notation for tetrads is explained in tetrad (index notation). Physical interpretation Frame fields of a Lorentzian manifold always correspond to a family of ideal observers immersed in the given spacetime; the integral curves of the timelike unit vector field are the worldlines of these observe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computer Algebra System
A computer algebra system (CAS) or symbolic algebra system (SAS) is any mathematical software with the ability to manipulate mathematical expressions in a way similar to the traditional manual computations of mathematicians and scientists. The development of the computer algebra systems in the second half of the 20th century is part of the discipline of "computer algebra" or "symbolic computation", which has spurred work in algorithms over mathematical objects such as polynomials. Computer algebra systems may be divided into two classes: specialized and general-purpose. The specialized ones are devoted to a specific part of mathematics, such as number theory, group theory, or teaching of elementary mathematics. General-purpose computer algebra systems aim to be useful to a user working in any scientific field that requires manipulation of mathematical expressions. To be useful, a general-purpose computer algebra system must include various features such as: *a user interface allo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Vanishing Scalar Invariant Spacetime
In mathematical physics, vanishing scalar invariant (VSI) spacetimes are Lorentzian manifolds with all polynomial curvature invariants of all orders vanishing. Although the only Riemannian manifold with VSI property is flat space, the Lorentzian case admits nontrivial spacetimes with this property. Distinguishing these VSI spacetimes from Minkowski spacetime requires comparing non-polynomial invariants or carrying out the full Cartan–Karlhede algorithm on non-scalar quantities. All VSI spacetimes are Kundt spacetimes. An example with this property in four dimensions is a pp-wave. VSI spacetimes however also contain some other four-dimensional Kundt spacetimes of Petrov type In differential geometry and theoretical physics, the Petrov classification (also known as Petrov–Pirani–Penrose classification) describes the possible algebraic symmetries of the Weyl tensor at each event in a Lorentzian manifold. It is mos ... N and III. VSI spacetimes in higher dimensions have s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Fluid Solution
In general relativity, a fluid solution is an exact solution of the Einstein field equation in which the gravitational field is produced entirely by the mass, momentum, and stress density of a fluid. In astrophysics, fluid solutions are often employed as stellar models. (It might help to think of a perfect gas as a special case of a perfect fluid.) In cosmology, fluid solutions are often used as cosmological models. Mathematical definition The stress–energy tensor of a relativistic fluid can be written in the form :T^ = \mu \, u^a \, u^b + p \, h^ + \left( u^a \, q^b + q^a \, u^b \right) + \pi^ Here * the world lines of the fluid elements are the integral curves of the velocity vector u^a, * the projection tensor h_ = g_ + u_a \, u_b projects other tensors onto hyperplane elements orthogonal to u^a, * the matter density is given by the scalar function \mu, * the pressure is given by the scalar function p, * the heat flux vector is given by q^a, * the viscous shear tensor is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Vacuum Solution (general Relativity)
In general relativity, a vacuum solution is a Lorentzian manifold whose Einstein tensor vanishes identically. According to the Einstein field equation, this means that the stress–energy tensor also vanishes identically, so that no matter or non-gravitational fields are present. These are distinct from the electrovacuum solutions, which take into account the electromagnetic field in addition to the gravitational field. Vacuum solutions are also distinct from the lambdavacuum solutions, where the only term in the stress–energy tensor is the cosmological constant term (and thus, the lambdavacuums can be taken as cosmological models). More generally, a vacuum region in a Lorentzian manifold is a region in which the Einstein tensor vanishes. Vacuum solutions are a special case of the more general exact solutions in general relativity. Equivalent conditions It is a mathematical fact that the Einstein tensor vanishes if and only if the Ricci tensor vanishes. This follows from th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Null Dust Solution
In mathematical physics, a null dust solution (sometimes called a null fluid) is a Lorentzian manifold in which the Einstein tensor is null. Such a spacetime can be interpreted as an exact solution of Einstein's field equation, in which the only mass–energy present in the spacetime is due to some kind of massless radiation. Mathematical definition By definition, the Einstein tensor of a null dust solution has the form G^ = 8 \pi \Phi \, k^ \, k^ where \vec is a null vector field. This definition makes sense purely geometrically, but if we place a stress–energy tensor on our spacetime of the form T^ = \Phi \, k^ \, k^, then Einstein's field equation is satisfied, and such a stress–energy tensor has a clear physical interpretation in terms of massless radiation. The vector field specifies the direction in which the radiation is moving; the scalar multiplier specifies its intensity. Physical interpretation Physically speaking, a null dust describes either gravitational rad ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Compact Group
In mathematics, a compact (topological) group is a topological group whose topology realizes it as a compact topological space (when an element of the group is operated on, the result is also within the group). Compact groups are a natural generalization of finite groups with the discrete topology and have properties that carry over in significant fashion. Compact groups have a well-understood theory, in relation to group actions and representation theory. In the following we will assume all groups are Hausdorff spaces. Compact Lie groups Lie groups form a class of topological groups, and the compact Lie groups have a particularly well-developed theory. Basic examples of compact Lie groups include * the circle group T and the torus groups T''n'', * the orthogonal group O(''n''), the special orthogonal group SO(''n'') and its covering spin group Spin(''n''), * the unitary group U(''n'') and the special unitary group SU(''n''), * the compact forms of the exceptional Lie gr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Metric Tensor
In the mathematical field of differential geometry, a metric tensor (or simply metric) is an additional structure on a manifold (such as a surface) that allows defining distances and angles, just as the inner product on a Euclidean space allows defining distances and angles there. More precisely, a metric tensor at a point of is a bilinear form defined on the tangent space at (that is, a bilinear function that maps pairs of tangent vectors to real numbers), and a metric tensor on consists of a metric tensor at each point of that varies smoothly with . A metric tensor is ''positive-definite'' if for every nonzero vector . A manifold equipped with a positive-definite metric tensor is known as a Riemannian manifold. Such a metric tensor can be thought of as specifying ''infinitesimal'' distance on the manifold. On a Riemannian manifold , the length of a smooth curve between two points and can be defined by integration, and the distance between and can be defined as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Definite Bilinear Form
In linguistics, definiteness is a semantic feature of noun phrases, distinguishing between referents or senses that are identifiable in a given context (definite noun phrases) and those which are not (indefinite noun phrases). The prototypical definite noun phrase picks out a unique, familiar, specific referent such as ''the sun'' or ''Australia'', as opposed to indefinite examples like ''an idea'' or ''some fish''. There is considerable variation in the expression of definiteness across languages, and some languages such as Japanese do not generally mark it so that the same expression could be definite in some contexts and indefinite in others. In other languages, such as English, it is usually marked by the selection of determiner (e.g., ''the'' vs ''a''). In still other languages, such as Danish, definiteness is marked morphologically. Definiteness as a grammatical category There are times when a grammatically marked definite NP is not in fact identifiable. For example, ''t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lie Group
In mathematics, a Lie group (pronounced ) is a group that is also a differentiable manifold. A manifold is a space that locally resembles Euclidean space, whereas groups define the abstract concept of a binary operation along with the additional properties it must have to be thought of as a "transformation" in the abstract sense, for instance multiplication and the taking of inverses (division), or equivalently, the concept of addition and the taking of inverses (subtraction). Combining these two ideas, one obtains a continuous group where multiplying points and their inverses are continuous. If the multiplication and taking of inverses are smooth (differentiable) as well, one obtains a Lie group. Lie groups provide a natural model for the concept of continuous symmetry, a celebrated example of which is the rotational symmetry in three dimensions (given by the special orthogonal group \text(3)). Lie groups are widely used in many parts of modern mathematics and physics. Lie ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]