HOME
*





Cantor's Back-and-forth Method
In mathematical logic, especially set theory and model theory, the back-and-forth method is a method for showing isomorphism between countably infinite structures satisfying specified conditions. In particular it can be used to prove that * any two countably infinite densely ordered sets (i.e., linearly ordered in such a way that between any two members there is another) without endpoints are isomorphic. An isomorphism between linear orders is simply a strictly increasing bijection. This result implies, for example, that there exists a strictly increasing bijection between the set of all rational numbers and the set of all real algebraic numbers. * any two countably infinite atomless Boolean algebras are isomorphic to each other. * any two equivalent countable atomic models of a theory are isomorphic. * the Erdős–Rényi model of random graphs, when applied to countably infinite graphs, almost surely produces a unique graph, the Rado graph. * any two many-complete recursive ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematical Logic
Mathematical logic is the study of logic, formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory. Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power. However, it can also include uses of logic to characterize correct mathematical reasoning or to establish foundations of mathematics. Since its inception, mathematical logic has both contributed to and been motivated by the study of foundations of mathematics. This study began in the late 19th century with the development of axiomatic frameworks for geometry, arithmetic, and Mathematical analysis, analysis. In the early 20th century it was shaped by David Hilbert's Hilbert's program, program to prove the consistency of foundational theories. Results of Kurt Gödel, Gerhard Gentzen, and others provided partial resolution to the program, and clarified the issues involved in pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Many-one Reduction
In computability theory and computational complexity theory, a many-one reduction (also called mapping reduction) is a reduction which converts instances of one decision problem L_1 into instances of a second decision problem L_2 where the instance reduced to is in the language L_2 if the initial instance was in its language L_1 and is not in the language L_2 if the initial instance was not in its language L_1. Thus if we can decide whether L_2 instances are in the language L_2, we can decide whether L_1 instances are in its language by applying the reduction and solving L_2. Thus, reductions can be used to measure the relative computational difficulty of two problems. It is said that L_1 reduces to L_2 if, in layman's terms L_2 is harder to solve than L_1. That is to say, any algorithm that solves L_2 can also be used as part of a (otherwise relatively simple) program that solves L_1. Many-one reductions are a special case and stronger form of Turing reductions. With many-one red ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Springer-Verlag
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second largest academic publisher with 65 staff in 1872.Chronology
". Springer Science+Business Media.
In 1964, Springer expanded its business internationally, o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Harvard University Press
Harvard University Press (HUP) is a publishing house established on January 13, 1913, as a division of Harvard University, and focused on academic publishing. It is a member of the Association of American University Presses. After the retirement of William P. Sisler in 2017, the university appointed as Director George Andreou. The press maintains offices in Cambridge, Massachusetts near Harvard Square, and in London, England. The press co-founded the distributor TriLiteral LLC with MIT Press and Yale University Press. TriLiteral was sold to LSC Communications in 2018. Notable authors published by HUP include Eudora Welty, Walter Benjamin, E. O. Wilson, John Rawls, Emily Dickinson, Stephen Jay Gould, Helen Vendler, Carol Gilligan, Amartya Sen, David Blight, Martha Nussbaum, and Thomas Piketty. The Display Room in Harvard Square, dedicated to selling HUP publications, closed on June 17, 2009. Related publishers, imprints, and series HUP owns the Belknap Press imprint, whi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cambridge University Press
Cambridge University Press is the university press of the University of Cambridge. Granted letters patent by Henry VIII of England, King Henry VIII in 1534, it is the oldest university press A university press is an academic publishing house specializing in monographs and scholarly journals. Most are nonprofit organizations and an integral component of a large research university. They publish work that has been reviewed by schola ... in the world. It is also the King's Printer. Cambridge University Press is a department of the University of Cambridge and is both an academic and educational publisher. It became part of Cambridge University Press & Assessment, following a merger with Cambridge Assessment in 2021. With a global sales presence, publishing hubs, and offices in more than 40 Country, countries, it publishes over 50,000 titles by authors from over 100 countries. Its publishing includes more than 380 academic journals, monographs, reference works, school and uni ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Ehrenfeucht–Fraïssé Game
In the mathematical discipline of model theory, the Ehrenfeucht–Fraïssé game (also called back-and-forth games) is a technique based on game semantics for determining whether two structures are elementarily equivalent. The main application of Ehrenfeucht–Fraïssé games is in proving the inexpressibility of certain properties in first-order logic. Indeed, Ehrenfeucht–Fraïssé games provide a complete methodology for proving inexpressibility results for first-order logic. In this role, these games are of particular importance in finite model theory and its applications in computer science (specifically computer aided verification and database theory), since Ehrenfeucht–Fraïssé games are one of the few techniques from model theory that remain valid in the context of finite models. Other widely used techniques for proving inexpressibility results, such as the compactness theorem, do not work in finite models. Ehrenfeucht–Fraïssé-like games can also be defined for othe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Roland Fraïssé
Roland Fraïssé (; 12 March 1920 – 30 March 2008) was a French mathematical logician. Fraïssé received his doctoral degree from the University of Paris in 1953. In his thesis, Fraïssé used the back-and-forth method to determine whether two model-theoretic In mathematical logic, model theory is the study of the relationship between formal theories (a collection of sentences in a formal language expressing statements about a mathematical structure), and their models (those structures in which the st ... structures were elementarily equivalent. This method of determining elementary equivalence was later formulated as the Ehrenfeucht–Fraïssé game. Fraïssé worked primarily in relation theory. Another of his important works was the Fraïssé construction of a Fraïssé limit of finite structures. He also formulated Fraïssé's conjecture on order embeddings, and introduced the notion of compensor in the theory of posets.Petits posets : dénombrement, représent ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Felix Hausdorff
Felix Hausdorff ( , ; November 8, 1868 – January 26, 1942) was a German mathematician who is considered to be one of the founders of modern topology and who contributed significantly to set theory, descriptive set theory, measure theory, and functional analysis. Life became difficult for Hausdorff and his family after Kristallnacht in 1938. The next year he initiated efforts to emigrate to the United States, but was unable to make arrangements to receive a research fellowship. On 26 January 1942, Felix Hausdorff, along with his wife and his sister-in-law, died by suicide by taking an overdose of veronal, rather than comply with German orders to move to the Endenich camp, and there suffer the likely implications, about which he held no illusions. Life Childhood and youth Hausdorff's father, the Jewish merchant Louis Hausdorff (1843–1896), moved with his young family to Leipzig in the autumn of 1870, and over time worked at various companies, including a linen-and cotton goo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Edward Vermilye Huntington
Edward Vermilye Huntington (April 26, 1874November 25, 1952) was an American mathematician. Biography Huntington was awarded the B.A. and the M.A. by Harvard University in 1895 and 1897, respectively. After two years' teaching at Williams College, he began a doctorate at the University of Strasbourg, which was awarded in 1901. He then spent his entire career at Harvard, retiring in 1941. He taught in the engineering school, becoming Professor of Mechanics in 1919. Although Huntington's research was mainly in pure mathematics, he valued teaching mathematics to engineering students. He advocated mechanical calculators and had one in his office. He had an interest in statistics, unusual for the time, and worked on statistical problems for the USA military during World War I. Huntington's primary research interest was the foundations of mathematics. He was one of the "American postulate theorists" (according to Michael Scanlan, the expression is due to John Corcoran), American mathem ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cooper Harold Langford
Cooper Harold Langford (25 August 1895, Dublin, Logan County, Arkansas – 28 August 1964) was an American analytic philosopher and mathematical logician who co-authored the book ''Symbolic Logic'' (1932) with C. I. Lewis. He is also known for introducing the Langford–Moore paradox. Biography After spending his freshman year at the University of Arkansas, Langford transferred in 1915 to Clark University, where he received his A.B. degree in 1920. His college education was interrupted by World War I in 1917 when he joined the U.S. army and spent 20 months overseas. After receiving his A.B. degree, Langford enrolled in 1920 as a graduate student at Harvard University, where he earned his Ph.D. in psychology under Edwin Boring in 1924. With the aid of a Sheldon Traveling Fellowship, he studied logic and philosophy at Cambridge University during 1924–1925. Upon his return to the U.S., Langford became an instructor at Harvard from 1925 to 1927. After spending two academic years, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bertrand Russell
Bertrand Arthur William Russell, 3rd Earl Russell, (18 May 1872 – 2 February 1970) was a British mathematician, philosopher, logician, and public intellectual. He had a considerable influence on mathematics, logic, set theory, linguistics, artificial intelligence, cognitive science, computer science and various areas of analytic philosophy, especially philosophy of mathematics, philosophy of language, epistemology, and metaphysics.Stanford Encyclopedia of Philosophy"Bertrand Russell" 1 May 2003. He was one of the early 20th century's most prominent logicians, and a founder of analytic philosophy, along with his predecessor Gottlob Frege, his friend and colleague G. E. Moore and his student and protégé Ludwig Wittgenstein. Russell with Moore led the British "revolt against idealism". Together with his former teacher A. N. Whitehead, Russell wrote ''Principia Mathematica'', a milestone in the development of classical logic, and a major attempt to reduce the whole ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Georg Cantor
Georg Ferdinand Ludwig Philipp Cantor ( , ;  – January 6, 1918) was a German mathematician. He played a pivotal role in the creation of set theory, which has become a fundamental theory in mathematics. Cantor established the importance of one-to-one correspondence between the members of two sets, defined infinite and well-ordered sets, and proved that the real numbers are more numerous than the natural numbers. In fact, Cantor's method of proof of this theorem implies the existence of an infinity of infinities. He defined the cardinal and ordinal numbers and their arithmetic. Cantor's work is of great philosophical interest, a fact he was well aware of. Originally, Cantor's theory of transfinite numbers was regarded as counter-intuitive – even shocking. This caused it to encounter resistance from mathematical contemporaries such as Leopold Kronecker and Henri Poincaré and later from Hermann Weyl and L. E. J. Brouwer, while Ludwig Wittgenstein raised ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]