HOME
*





CYP4A11
Cytochrome P450 4A11 is a protein that in humans is codified by the ''CYP4A11'' gene. Function This gene encodes a member of the cytochrome P450 superfamily of enzymes. The cytochrome P450 proteins are monooxygenases which catalyze many reactions involved in drug metabolism and synthesis of cholesterol, steroids and other lipids. This protein localizes to the endoplasmic reticulum and hydroxylates medium-chain fatty acids such as laurate and myristate. CYP4A11 is highly expressed in the liver and kidney. CYP4A11 along with CYP4A22, CYP4F2, and CYP4F3 metabolize arachidonic acid to 20-Hydroxyeicosatetraenoic acid (20-HETE) by an Omega oxidation reaction with the predominant 20-HETE-synthesizing enzymes in humans being CYP4F2 followed by CYP4A11; 20-HETE regulates blood flow, vascularization, blood pressure, and kidney tubule absorption of ions in rodents and possibly humans. Gene polymorphism variants of CYP4A11 are associated with the development of hypertension and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


20-Hydroxyeicosatetraenoic Acid
20-Hydroxyeicosatetraenoic acid, also known as 20-HETE or 20-hydroxy-5''Z'',8''Z'',11''Z'',14''Z''-eicosatetraenoic acid, is an eicosanoid metabolite of arachidonic acid that has a wide range of effects on the vascular system including the regulation of vascular tone, blood flow to specific organs, sodium and fluid transport in the kidney, and vascular pathway remodeling. These vascular and kidney effects of 20-HETE have been shown to be responsible for regulating blood pressure and blood flow to specific organs in rodents; genetic and preclinical studies suggest that 20-HETE may similarly regulate blood pressure and contribute to the development of stroke and heart attacks. Additionally the loss of its production appears to be one cause of the human neurological disease, Hereditary spastic paraplegia. Preclinical studies also suggest that the overproduction of 20-HETE may contribute to the progression of certain human cancers, particularly those of the breast. Biosynthesis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


CYP4A22
CYP4A22 (cytochrome P450, family 4, subfamily A, polypeptide 22) also known as fatty acid omega-hydroxylase is a protein which in humans is encoded by the ''CYP4A22'' gene. This gene encodes a member of the cytochrome P450 superfamily of enzymes. The cytochrome P450 proteins are monooxygenases which catalyze many reactions involved in drug metabolism and synthesis of cholesterol, steroids and other lipids. This gene is part of a cluster of cytochrome P450 genes on chromosome 1p33. CYP4A22 was once considered, along with CYP4A11, CYP4F2, and CYP4F3, as active in metabolizing arachidonic acid to 20-hydroxyeicosatetraenoic acid 20-Hydroxyeicosatetraenoic acid, also known as 20-HETE or 20-hydroxy-5''Z'',8''Z'',11''Z'',14''Z''-eicosatetraenoic acid, is an eicosanoid metabolite of arachidonic acid that has a wide range of effects on the vascular system including the regula ... (20-HETE) by an omega oxidation reaction with the predominant 20-HETE-synthesizing enzymes in humans b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


CYP4F2
Leukotriene-B(4) omega-hydroxylase 1 is an enzyme protein involved in the metabolism of various endogenous substrates (mainly the fatty acids) and xenobiotics (including pharmaceutical drugs). The most notable substrate of the enzyme is leukotriene B4, a potent mediator of inflammation. The ''CYP4F2'' gene encodes the enzyme in humans. Function The Leukotriene-B(4) omega-hydroxylase 1, or simply the CYP4F2 enzyme protein, encoded by ''CYP4F2'' gene in humans, is a member of the cytochrome P450 superfamily of enzymes. The ''CYP4F2'' gene belongs to a cluster of cytochrome P450 genes on chromosome 19. Another member of this family, '' CYP4F11'', is approximately 16 kb away. The enzyme is called Leukotriene-B(4) omega-hydroxylase 1 because it starts the process of inactivating and degrading leukotriene B4, a potent mediator of inflammation. The cytochrome P450 enzymes are monooxygenases which catalyze many reactions involved in drug metabolism and synthesis of cholesterol, stero ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gene Polymorphism
A gene is said to be polymorphic if more than one allele occupies that gene's locus within a population. In addition to having more than one allele at a specific locus, each allele must also occur in the population at a rate of at least 1% to generally be considered polymorphic. Gene polymorphisms can occur in any region of the genome. The majority of polymorphisms are silent, meaning they do not alter the function or expression of a gene. Some polymorphisms are visible. For example, in dogs the E locus can have any of five different alleles, known as E, Em, Eg, Eh, and e. Varying combinations of these alleles contribute to the pigmentation and patterns seen in dog coats. A polymorphic variant of a gene can lead to the abnormal expression or to the production of an abnormal form of the protein; this abnormality may cause or be associated with disease. For example, a polymorphic variant of the gene encoding the enzyme CYP4A11, in which thymidine replaces cytosine at the gene's ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Epoxydocosapentaenoic Acid
Epoxide docosapentaenoic acids (epoxydocosapentaenoic acids, EDPs, or EpDPEs) are metabolites of the 22-carbon straight-chain omega-3 fatty acid, docosahexaenoic acid (DHA). Cell types that express certain cytochrome P450 (CYP) epoxygenases metabolize polyunsaturated fatty acid's (PUFAs) by converting one of their double bonds to an epoxide. In the best known of these metabolic pathways, cellular CYP epoxygenases metabolize the 20-carbon straight-chain omega-6 fatty acid, arachidonic acid, to epoxyeicosatrienoic acids (EETs); another CYP epoxygenase pathway metabolizes the 20-carbon omega-3 fatty acid, eicosapentaenoic acid (EPA), to epoxyeicosatetraenoic acids (EEQs). CYP epoxygenases similarly convert various other PUFAs to epoxides (see epoxygenase) These epoxide metabolites have a variety of activities. However, essentially all of them are rapidly converted to their corresponding, but in general far less active, Vicinal (chemistry) dihydroxy fatty acids by ubiquitous cellu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cytochrome P450
Cytochromes P450 (CYPs) are a superfamily of enzymes containing heme as a cofactor that functions as monooxygenases. In mammals, these proteins oxidize steroids, fatty acids, and xenobiotics, and are important for the clearance of various compounds, as well as for hormone synthesis and breakdown. In 1963, Estabrook, Cooper, and Rosenthal described the role of CYP as a catalyst in steroid hormone synthesis and drug metabolism. In plants, these proteins are important for the biosynthesis of defensive compounds, fatty acids, and hormones. CYP enzymes have been identified in all kingdoms of life: animals, plants, fungi, protists, bacteria, and archaea, as well as in viruses. However, they are not omnipresent; for example, they have not been found in ''Escherichia coli''. , more than 300,000 distinct CYP proteins are known. CYPs are, in general, the terminal oxidase enzymes in electron transfer chains, broadly categorized as P450-containing systems. The term "P450" is derived fro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Epoxygenase
Epoxygenases are a set of membrane-bound, heme-containing cytochrome P450 (CYP P450 or just CYP) enzymes that metabolize polyunsaturated fatty acids to epoxide products that have a range of biological activities. The most thoroughly studied substrate of the CYP epoxylgenases is arachidonic acid. This polyunsaturated fatty acid is metabolized by cyclooxygenases to various prostaglandin, thromboxane, and prostacyclin metabolites in what has been termed the first pathway of eicosanoid production; it is also metabolized by various lipoxygenases to hydroxyeicosatetraenoic acids (e.g. 5-Hydroxyeicosatetraenoic acid, 12-Hydroxyeicosatetraenoic acid, 15-hydroxyicosatetraenoic acid) and leukotrienes (e.g. leukotriene B4, leukotriene C4) in what has been termed the second pathway of eicosanoid production. The metabolism of arachidonic acid to epoxyeicosatrienoic acids by the CYP epoxygenases has been termed the third pathway of eicosanoid metabolism. Like the first two pathways ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Omega Oxidation
Omega oxidation (ω-oxidation) is a process of fatty acid metabolism in some species of animals. It is an alternative pathway to beta oxidation that, instead of involving the β carbon, involves the oxidation of the ω carbon (the carbon most distant from the carboxyl group of the fatty acid). The process is normally a minor catabolic pathway for medium-chain fatty acids (10-12 carbon atoms), but becomes more important when β oxidation is defective. In vertebrates, the enzymes for ω oxidation are located in the smooth ER of liver and kidney cells, instead of in the mitochondria as with β oxidation. The steps of the process are as follows: After these three steps, either end of the fatty acid can be attached to coenzyme A. The molecule can then enter the mitochondrion and undergo β oxidation. The final products after successive oxidations include succinic acid, which can enter the citric acid cycle, and adipic acid. The first step in ω-oxidation, i.e. addition of a hydroxy ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Epoxydocosapentaenoic Acid
Epoxide docosapentaenoic acids (epoxydocosapentaenoic acids, EDPs, or EpDPEs) are metabolites of the 22-carbon straight-chain omega-3 fatty acid, docosahexaenoic acid (DHA). Cell types that express certain cytochrome P450 (CYP) epoxygenases metabolize polyunsaturated fatty acid's (PUFAs) by converting one of their double bonds to an epoxide. In the best known of these metabolic pathways, cellular CYP epoxygenases metabolize the 20-carbon straight-chain omega-6 fatty acid, arachidonic acid, to epoxyeicosatrienoic acids (EETs); another CYP epoxygenase pathway metabolizes the 20-carbon omega-3 fatty acid, eicosapentaenoic acid (EPA), to epoxyeicosatetraenoic acids (EEQs). CYP epoxygenases similarly convert various other PUFAs to epoxides (see epoxygenase) These epoxide metabolites have a variety of activities. However, essentially all of them are rapidly converted to their corresponding, but in general far less active, Vicinal (chemistry) dihydroxy fatty acids by ubiquitous cellu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Epoxyeicosatetraenoic Acid
Epoxyeicosatetraenoic acids (EEQs or EpETEs) are a set of biologically active epoxides that various cell types make by metabolizing the omega 3 fatty acid, eicosapentaenoic acid (EPA), with certain cytochrome P450 epoxygenases. These epoxygenases can metabolize EPA to as many as 10 epoxides that differ in the site and/or stereoisomer of the epoxide formed; however, the formed EEQs, while differing in potency, often have similar bioactivities and are commonly considered together. Structure EPA is a straight-chain, 20 carbon omega-3 fatty acid containing cis (see Cis–trans isomerism) double bonds between carbons 5 and 6, 8 and 9, 11 and 12, 14 and 15, and 17 and 18; each of these double bonds is designated with the notation ''Z'' to indicate its cis configuration in the IUPAC Chemical nomenclature used here. EPA is therefore 5''Z'',8''Z'',11''Z'',14''Z'',17''Z''-eicosapentaenoic acid. Certain cytochrome P450 epoxygenases metabolize EPA by converting one of these double bounds to a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Epoxyeicosatetraenoic Acid
Epoxyeicosatetraenoic acids (EEQs or EpETEs) are a set of biologically active epoxides that various cell types make by metabolizing the omega 3 fatty acid, eicosapentaenoic acid (EPA), with certain cytochrome P450 epoxygenases. These epoxygenases can metabolize EPA to as many as 10 epoxides that differ in the site and/or stereoisomer of the epoxide formed; however, the formed EEQs, while differing in potency, often have similar bioactivities and are commonly considered together. Structure EPA is a straight-chain, 20 carbon omega-3 fatty acid containing cis (see Cis–trans isomerism) double bonds between carbons 5 and 6, 8 and 9, 11 and 12, 14 and 15, and 17 and 18; each of these double bonds is designated with the notation ''Z'' to indicate its cis configuration in the IUPAC Chemical nomenclature used here. EPA is therefore 5''Z'',8''Z'',11''Z'',14''Z'',17''Z''-eicosapentaenoic acid. Certain cytochrome P450 epoxygenases metabolize EPA by converting one of these double bounds to a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


CYP2C9
Cytochrome P450 family 2 subfamily C member 9 (abbreviated CYP2C9) is an enzyme protein. The enzyme is involved in metabolism, by oxidation, of both xenobiotics, including drugs, and endogenous compounds, including fatty acids. In humans, the protein is encoded by the ''CYP2C9'' gene. The gene is highly polymorphic, which affects the efficiency of the metabolism by the enzyme. Function CYP2C9 is a crucial cytochrome P450 enzyme, which plays a significant role in the metabolism, by oxidation, of both xenobiotic and endogenous compounds. CYP2C9 makes up about 18% of the cytochrome P450 protein in liver microsomes. The protein is mainly expressed in liver, duodenum and small intestine. About 100 therapeutic drugs are metabolized by CYP2C9, including drugs with a narrow therapeutic index such as warfarin and phenytoin, and other routinely prescribed drugs such as acenocoumarol, tolbutamide, losartan, glipizide, and some nonsteroidal anti-inflammatory drugs. By contrast, the known ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]