C-38 (cipher Machine)
   HOME
*



picture info

C-38 (cipher Machine)
In cryptography, the M-209, designated CSP-1500 by the United States Navy (C-38 by the manufacturer) is a portable, mechanical cipher machine used by the US military primarily in World War II, though it remained in active use through the Korean War. The M-209 was designed by Swedish cryptographer Boris Hagelin in response to a request for such a portable cipher machine, and was an improvement of an earlier machine, the C-36. The M-209 is about the size of a lunchbox, in its final form measuring and weighing (plus for the case). It represented a brilliant achievement for pre-electronic technology. It was a rotor machine similar to a telecipher machine, such as the Lorenz cipher and the Geheimfernschreiber. Basic operation Basic operation of the M-209 is relatively straightforward. Six adjustable ''key wheels'' on top of the box each display a letter of the alphabet. These six wheels comprise the external key for the machine, providing an initial state, similar to an ini ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

M209B-IMG 0553-0559-0560
M, or m, is the thirteenth letter in the Latin alphabet, used in the modern English alphabet, the alphabets of other western European languages and others worldwide. Its name in English is ''em'' (pronounced ), plural ''ems''. History The letter M is derived from the Phoenician Mem, via the Greek Mu (Μ, μ). Semitic Mem is most likely derived from a " Proto-Sinaitic" (Bronze Age) adoption of the "water" ideogram in Egyptian writing. The Egyptian sign had the acrophonic value , from the Egyptian word for "water", ''nt''; the adoption as the Semitic letter for was presumably also on acrophonic grounds, from the Semitic word for "water", '' *mā(y)-''. Use in writing systems The letter represents the bilabial nasal consonant sound in the orthography of Latin as well as in that of many modern languages, and also in the International Phonetic Alphabet. In English, the Oxford English Dictionary (first edition) says that is sometimes a vowel, in words like ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Morse Code
Morse code is a method used in telecommunication to encode text characters as standardized sequences of two different signal durations, called ''dots'' and ''dashes'', or ''dits'' and ''dahs''. Morse code is named after Samuel Morse, one of the inventors of the telegraph. International Morse code encodes the 26  basic Latin letters through , one accented Latin letter (), the Arabic numerals, and a small set of punctuation and procedural signals ( prosigns). There is no distinction between upper and lower case letters. Each Morse code symbol is formed by a sequence of ''dits'' and ''dahs''. The ''dit'' duration is the basic unit of time measurement in Morse code transmission. The duration of a ''dah'' is three times the duration of a ''dit''. Each ''dit'' or ''dah'' within an encoded character is followed by a period of signal absence, called a ''space'', equal to the ''dit'' duration. The letters of a word are separated by a space of duration equal to three ''dits'', ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Nokia Bell Labs
Nokia Bell Labs, originally named Bell Telephone Laboratories (1925–1984), then AT&T Bell Laboratories (1984–1996) and Bell Labs Innovations (1996–2007), is an American industrial research and scientific development company owned by multinational company Nokia. With headquarters located in Murray Hill, New Jersey, the company operates several laboratories in the United States and around the world. Researchers working at Bell Laboratories are credited with the development of radio astronomy, the transistor, the laser, the photovoltaic cell, the charge-coupled device (CCD), information theory, the Unix operating system, and the programming languages B, C, C++, S, SNOBOL, AWK, AMPL, and others. Nine Nobel Prizes have been awarded for work completed at Bell Laboratories. Bell Labs had its origin in the complex corporate organization of the Bell System telephone conglomerate. In the late 19th century, the laboratory began as the Western Electric Engineering Department, l ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Robert Morris (cryptographer)
Robert H. Morris Sr. (July 25, 1932 – June 26, 2011) was an American cryptographer and computer scientist. __TOC__ Family and education Morris was born in Boston, Massachusetts. His parents were Walter W. Morris, a salesman, and Helen Kelly Morris, a homemaker. He received a bachelor's degree in mathematics from Harvard University in 1957 and a master's degree in applied mathematics from Harvard in 1958. He married Anne Farlow, and they had three children together: Robert Tappan Morris (author of the 1988 Morris worm), Meredith Morris, and Benjamin Morris. Bell Labs From 1960 until 1986, Morris was a researcher at Bell Labs and worked on Multics and later Unix. Together with Douglas McIlroy, he created M6 macro processor in FORTRAN IV, which was later ported to Unix. Using the TMG compiler-compiler, Morris, together with McIlroy, developed the early implementation of PL/I compiler called EPL for Multics project. The pair also contributed a version of runoff text-forma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dennis Ritchie
Dennis MacAlistair Ritchie (September 9, 1941 – October 12, 2011) was an American computer scientist. He is most well-known for creating the C programming language and, with long-time colleague Ken Thompson, the Unix operating system and B programming language. Ritchie and Thompson were awarded the Turing Award from the ACM in 1983, the Hamming Medal from the IEEE in 1990 and the National Medal of Technology from President Bill Clinton in 1999. Ritchie was the head of Lucent Technologies System Software Research Department when he retired in 2007. He was the "R" in K&R C, and commonly known by his username dmr. Personal life and career Dennis Ritchie was born in Bronxville, New York. His father was Alistair E. Ritchie, a longtime Bell Labs scientist and co-author of ''The Design of Switching Circuits'' on switching circuit theory. As a child, Dennis moved with his family to Summit, New Jersey, where he graduated from Summit High School. He graduated from Harvard Universi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


German Code Breaking In World War II
German code breaking in World War II achieved some notable successes cracking British naval ciphers until well into the fourth year of the war, using the extensive German radio intelligence operations during World War II. Cryptanalysis also suffered from a problem typical of the German armed forces of the time: numerous branches and institutions maintained their own cryptographic departments, working on their own without collaboration or sharing results or methods. This led to duplicated effort, to a fragmentation of potential, and to lower efficiency than might have been achieved. There was no central German cryptography agency comparable to Britain’s Government Code and Cypher School (GC&CS), based at Bletchley Park. History Departments In Germany, each cryptographic department was responsible for cryptanalytic operations. They included: *'' Deutsche Reichspost'' (DRP) - ''Reich'' Mail Service) *'' Forschungsstelle'' - "Research Bureau", telephone intercept unit, part of the DRP ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Atbash
Atbash ( he, אתבש; also transliterated Atbaš) is a monoalphabetic substitution cipher originally used to encrypt the Hebrew alphabet. It can be modified for use with any known writing system with a standard collating order. Encryption The Atbash cipher is a particular type of monoalphabetic cipher formed by taking the alphabet (or abjad, syllabary, etc.) and mapping it to its reverse, so that the first letter becomes the last letter, the second letter becomes the second to last letter, and so on. For example, the Latin alphabet would work like this: Due to the fact that there is only one way to perform this, the Atbash cipher provides no communications security, as it lacks any sort of key. If multiple collating orders are available, which one was used in encryption can be used as a key, but this does not provide significantly more security, considering that only a few letters can give away which one was used. History The name derives from the first, last, second, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Beaufort Cipher
The Beaufort cipher, created by Sir Francis Beaufort, is a substitution cipher similar to the Vigenère cipher, with a slightly modified enciphering mechanism and tableau. Its most famous application was in a rotor-based cipher machine, the Hagelin M-209. The Beaufort cipher is based on the Beaufort square which is essentially the same as a Vigenère square but in reverse order starting with the letter "Z" in the first row, where the first row and the last column serve the same purpose. Using the cipher To encrypt, first choose the plaintext character from the top row of the tableau; call this column P. Secondly, travel down column P to the corresponding key letter K. Finally, move directly left from the key letter to the left edge of the tableau, the ciphertext encryption of plaintext P with key K will be there. For example if encrypting plain text character "d" with key "m" the steps would be: # find the column with "d" on the top, # travel down that column to find key "m" ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Substitution Cipher
In cryptography, a substitution cipher is a method of encrypting in which units of plaintext are replaced with the ciphertext, in a defined manner, with the help of a key; the "units" may be single letters (the most common), pairs of letters, triplets of letters, mixtures of the above, and so forth. The receiver deciphers the text by performing the inverse substitution process to extract the original message. Substitution ciphers can be compared with transposition ciphers. In a transposition cipher, the units of the plaintext are rearranged in a different and usually quite complex order, but the units themselves are left unchanged. By contrast, in a substitution cipher, the units of the plaintext are retained in the same sequence in the ciphertext, but the units themselves are altered. There are a number of different types of substitution cipher. If the cipher operates on single letters, it is termed a simple substitution cipher; a cipher that operates on larger groups of letters ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gear
A gear is a rotating circular machine part having cut teeth or, in the case of a cogwheel or gearwheel, inserted teeth (called ''cogs''), which mesh with another (compatible) toothed part to transmit (convert) torque and speed. The basic principle behind the operation of gears is analogous to the basic principle of levers. A gear may also be known informally as a cog. Geared devices can change the speed, torque, and direction of a power source. Gears of different sizes produce a change in torque, creating a mechanical advantage, through their ''gear ratio'', and thus may be considered a simple machine. The rotational speeds, and the torques, of two meshing gears differ in proportion to their diameters. The teeth on the two meshing gears all have the same shape. Two or more meshing gears, working in a sequence, are called a gear train or a '' transmission''. The gears in a transmission are analogous to the wheels in a crossed, belt pulley system. An advantage of gears is tha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Coprime
In mathematics, two integers and are coprime, relatively prime or mutually prime if the only positive integer that is a divisor of both of them is 1. Consequently, any prime number that divides does not divide , and vice versa. This is equivalent to their greatest common divisor (GCD) being 1. One says also '' is prime to '' or '' is coprime with ''. The numbers 8 and 9 are coprime, despite the fact that neither considered individually is a prime number, since 1 is their only common divisor. On the other hand, 6 and 9 are not coprime, because they are both divisible by 3. The numerator and denominator of a reduced fraction are coprime, by definition. Notation and testing Standard notations for relatively prime integers and are: and . In their 1989 textbook ''Concrete Mathematics'', Ronald Graham, Donald Knuth, and Oren Patashnik proposed that the notation a\perp b be used to indicate that and are relatively prime and that the term "prime" be used instead of coprime (as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]