Büchi Arithmetic
   HOME
*





Büchi Arithmetic
Büchi arithmetic of base ''k'' is the first-order theory of the natural numbers with addition and the function V_k(x) which is defined as the largest power of ''k'' dividing ''x'', named in honor of the Swiss mathematician Julius Richard Büchi. The signature of Büchi arithmetic contains only the addition operation, V_k and equality, omitting the multiplication operation entirely. Unlike Peano arithmetic, Büchi arithmetic is a decidable theory. This means it is possible to effectively determine, for any sentence in the language of Büchi arithmetic, whether that sentence is provable from the axioms of Büchi arithmetic. Büchi arithmetic and automata A subset X\subseteq \mathbb N^n is definable in Büchi arithmetic of base ''k'' if and only if it is ''k''-recognisable. If n=1 this means that the set of integers of ''X'' in base ''k'' is accepted by an automaton. Similarly if n>1 there exists an automaton that reads the first digits, then the second digits, and so on, of ''n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

First-order Predicate Calculus
First-order logic—also known as predicate logic, quantificational logic, and first-order predicate calculus—is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over non-logical objects, and allows the use of sentences that contain variables, so that rather than propositions such as "Socrates is a man", one can have expressions in the form "there exists x such that x is Socrates and x is a man", where "there exists''"'' is a quantifier, while ''x'' is a variable. This distinguishes it from propositional logic, which does not use quantifiers or relations; in this sense, propositional logic is the foundation of first-order logic. A theory about a topic is usually a first-order logic together with a specified domain of discourse (over which the quantified variables range), finitely many functions from that domain to itself, finitely many predicates defined on that domain, and a set of axi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Natural Number
In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called ''Cardinal number, cardinal numbers'', and numbers used for ordering are called ''Ordinal number, ordinal numbers''. Natural numbers are sometimes used as labels, known as ''nominal numbers'', having none of the properties of numbers in a mathematical sense (e.g. sports Number (sports), jersey numbers). Some definitions, including the standard ISO/IEC 80000, ISO 80000-2, begin the natural numbers with , corresponding to the non-negative integers , whereas others start with , corresponding to the positive integers Texts that exclude zero from the natural numbers sometimes refer to the natural numbers together with zero as the whole numbers, while in other writings, that term is used instead for the integers (including negative integers). The natural ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Addition
Addition (usually signified by the Plus and minus signs#Plus sign, plus symbol ) is one of the four basic Operation (mathematics), operations of arithmetic, the other three being subtraction, multiplication and Division (mathematics), division. The addition of two Natural number, whole numbers results in the total amount or ''summation, sum'' of those values combined. The example in the adjacent image shows a combination of three apples and two apples, making a total of five apples. This observation is equivalent to the Expression (mathematics), mathematical expression (that is, "3 ''plus'' 2 is Equality (mathematics), equal to 5"). Besides counting items, addition can also be defined and executed without referring to concrete objects, using abstractions called numbers instead, such as integers, real numbers and complex numbers. Addition belongs to arithmetic, a branch of mathematics. In algebra, another area of mathematics, addition can also be performed on abstract objects su ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Julius Richard Büchi
Julius Richard Büchi (1924–1984) was a Swiss logician and mathematician. He received his Dr. sc. nat. in 1950 at ETH Zurich under the supervision of Paul Bernays and Ferdinand Gonseth. Shortly afterwards he went to Purdue University in Lafayette, Indiana. He and his first student Lawrence Landweber had a major influence on the development of theoretical computer science. Together with his friend Saunders Mac Lane, a student of Paul Bernays as well, Büchi published numerous celebrated works. He invented what is now known as the Büchi automaton, a finite-state machine accepting certain sets of infinite sequences of characters known as omega-regular languages. The "''n'' squares' problem", known also as Büchi's problem, is an open problem from number theory, closely related to Hilbert's tenth problem Hilbert's tenth problem is the tenth on the list of mathematical problems that the German mathematician David Hilbert posed in 1900. It is the challenge to provide a gene ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Signature (mathematical Logic)
In logic, especially mathematical logic, a signature lists and describes the non-logical symbols of a formal language. In universal algebra, a signature lists the operations that characterize an algebraic structure. In model theory, signatures are used for both purposes. They are rarely made explicit in more philosophical treatments of logic. Definition Formally, a (single-sorted) signature can be defined as a 4-tuple , where ''S''func and ''S''rel are disjoint sets not containing any other basic logical symbols, called respectively * ''function symbols'' (examples: +, ×, 0, 1), * ''relation symbols'' or ''predicates'' (examples: ≤, ∈), * ''constant symbols'' (examples: 0, 1), and a function ar: ''S''func \cup ''S''rel → \mathbb N which assigns a natural number called ''arity'' to every function or relation symbol. A function or relation symbol is called ''n''-ary if its arity is ''n''. Some authors define a nullary (0-ary) function symbol as ''constant s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Peano Arithmetic
In mathematical logic, the Peano axioms, also known as the Dedekind–Peano axioms or the Peano postulates, are axioms for the natural numbers presented by the 19th century Italian mathematician Giuseppe Peano. These axioms have been used nearly unchanged in a number of metamathematical investigations, including research into fundamental questions of whether number theory is consistent and complete. The need to formalize arithmetic was not well appreciated until the work of Hermann Grassmann, who showed in the 1860s that many facts in arithmetic could be derived from more basic facts about the successor operation and induction. In 1881, Charles Sanders Peirce provided an axiomatization of natural-number arithmetic. In 1888, Richard Dedekind proposed another axiomatization of natural-number arithmetic, and in 1889, Peano published a simplified version of them as a collection of axioms in his book, ''The principles of arithmetic presented by a new method'' ( la, Arithmetice ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Decidability (logic)
In logic, a true/false decision problem is decidable if there exists an effective method for deriving the correct answer. Zeroth-order logic (propositional logic) is decidable, whereas first-order and higher-order logic are not. Logical systems are decidable if membership in their set of logically valid formulas (or theorems) can be effectively determined. A theory (set of sentences closed under logical consequence) in a fixed logical system is decidable if there is an effective method for determining whether arbitrary formulas are included in the theory. Many important problems are undecidable, that is, it has been proven that no effective method for determining membership (returning a correct answer after finite, though possibly very long, time in all cases) can exist for them. Decidability of a logical system Each logical system comes with both a syntactic component, which among other things determines the notion of provability, and a semantic component, which determines ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Automatic Sequence
In mathematics and theoretical computer science, an automatic sequence (also called a ''k''-automatic sequence or a ''k''-recognizable sequence when one wants to indicate that the base of the numerals used is ''k'') is an infinite sequence of terms characterized by a finite automaton. The ''n''-th term of an automatic sequence ''a''(''n'') is a mapping of the final state reached in a finite automaton accepting the digits of the number ''n'' in some fixed base ''k''.Allouche & Shallit (2003) p. 152Berstel et al (2009) p. 78 An automatic set is a set of non-negative integers ''S'' for which the sequence of values of its characteristic function χ''S'' is an automatic sequence; that is, ''S'' is ''k''-automatic if χ''S''(''n'') is ''k''-automatic, where χ''S''(''n'') = 1 if ''n'' \in ''S'' and 0 otherwise. Definition Automatic sequences may be defined in a number of ways, all of which are equivalent. Four common definitions are as follows. Automata-theore ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Automata Theory
Automata theory is the study of abstract machines and automata, as well as the computational problems that can be solved using them. It is a theory in theoretical computer science. The word ''automata'' comes from the Greek word αὐτόματος, which means "self-acting, self-willed, self-moving". An automaton (automata in plural) is an abstract self-propelled computing device which follows a predetermined sequence of operations automatically. An automaton with a finite number of states is called a Finite Automaton (FA) or Finite-State Machine (FSM). The figure on the right illustrates a finite-state machine, which is a well-known type of automaton. This automaton consists of states (represented in the figure by circles) and transitions (represented by arrows). As the automaton sees a symbol of input, it makes a transition (or jump) to another state, according to its transition function, which takes the previous state and current input symbol as its arguments. Automata theo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Multiplicative Independence
In number theory, two positive integers ''a'' and ''b'' are said to be multiplicatively independent if their only common integer power is 1. That is, for integers ''n'' and ''m'', a^n=b^m implies n=m=0. Two integers which are not multiplicatively independent are said to be multiplicatively dependent. As examples, 36 and 216 are multiplicatively dependent since 36^3=(6^2)^3=(6^3)^2=216^2, whereas 6 and 12 are multiplicatively independent. Properties Being multiplicatively independent admits some other characterizations. ''a'' and ''b'' are multiplicatively independent if and only if \log(a)/\log(b) is irrational. This property holds independently of the base of the logarithm. Let a = p_1^p_2^ \cdots p_k^ and b = q_1^q_2^ \cdots q_l^ be the canonical representations of ''a'' and ''b''. The integers ''a'' and ''b'' are multiplicatively dependent if and only if ''k'' = ''l'', p_i=q_i and \frac=\frac for all ''i'' and ''j''. Applications Büchi arithmet ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Peano Axioms
In mathematical logic, the Peano axioms, also known as the Dedekind–Peano axioms or the Peano postulates, are axioms for the natural numbers presented by the 19th century Italian mathematician Giuseppe Peano. These axioms have been used nearly unchanged in a number of metamathematical investigations, including research into fundamental questions of whether number theory is consistent and complete. The need to formalize arithmetic was not well appreciated until the work of Hermann Grassmann, who showed in the 1860s that many facts in arithmetic could be derived from more basic facts about the successor operation and induction. In 1881, Charles Sanders Peirce provided an axiomatization of natural-number arithmetic. In 1888, Richard Dedekind proposed another axiomatization of natural-number arithmetic, and in 1889, Peano published a simplified version of them as a collection of axioms in his book, ''The principles of arithmetic presented by a new method'' ( la, Arithmet ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Presburger Arithmetic
Presburger arithmetic is the first-order theory of the natural numbers with addition, named in honor of Mojżesz Presburger, who introduced it in 1929. The signature of Presburger arithmetic contains only the addition operation and equality, omitting the multiplication operation entirely. The axioms include a schema of induction. Presburger arithmetic is much weaker than Peano arithmetic, which includes both addition and multiplication operations. Unlike Peano arithmetic, Presburger arithmetic is a decidable theory. This means it is possible to algorithmically determine, for any sentence in the language of Presburger arithmetic, whether that sentence is provable from the axioms of Presburger arithmetic. The asymptotic running-time computational complexity of this algorithm is at least doubly exponential, however, as shown by . Overview The language of Presburger arithmetic contains constants 0 and 1 and a binary function +, interpreted as addition. In this language, the axioms ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]