Béla Kerékjártó
   HOME
*



picture info

Béla Kerékjártó
Béla Kerékjártó (1 October 1898, in Budapest – 26 June 1946, in Gyöngyös) was a Hungarian mathematician who wrote numerous articles on topology. Kerékjártó earned his Ph.D. degree from the University of Budapest in 1920. He taught at the Faculty of Sciences of the University of Szeged starting in 1922. In 1921 he introduced his program with a talk "On topological fundamentals of analysis and geometry" where he advocated that "complex analysis should be built with instruments of topology without metric elements such as length and area." Life and career In 1923, Kerékjártó published one of the first books on Topology, which was reviewed by Solomon Lefschetz in 1925. Hermann Weyl wrote that this book completely changed his views of the subject. In 1919 he published a theorem on periodic homeomorphisms of the disc and the sphere. A claim to priority to the result was made by L. E. J. Brouwer, and the subject was revisited by Samuel Eilenberg in 1934. A modern treatme ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Samuel Eilenberg
Samuel Eilenberg (September 30, 1913 – January 30, 1998) was a Polish-American mathematician who co-founded category theory (with Saunders Mac Lane) and homological algebra. Early life and education He was born in Warsaw, Kingdom of Poland to a Jewish family. He spent much of his career as a professor at Columbia University. He earned his Ph.D. from University of Warsaw in 1936, with thesis ''On the Topological Applications of Maps onto a Circle''; his thesis advisors were Kazimierz Kuratowski and Karol Borsuk. He died in New York City in January 1998. Career Eilenberg's main body of work was in algebraic topology. He worked on the axiomatic treatment of homology theory with Norman Steenrod (and the Eilenberg–Steenrod axioms are named for the pair), and on homological algebra with Saunders Mac Lane. In the process, Eilenberg and Mac Lane created category theory. Eilenberg was a member of Bourbaki and, with Henri Cartan, wrote the 1956 book ''Homological Algebra''. Later ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Commentarii Mathematici Helvetici
The ''Commentarii Mathematici Helvetici'' is a quarterly peer-reviewed scientific journal in mathematics. The Swiss Mathematical Society started the journal in 1929 after a meeting in May of the previous year. The Swiss Mathematical Society still owns and operates the journal; the publishing is currently handled on its behalf by the European Mathematical Society. The scope of the journal includes research articles in all aspects in mathematics. The editors-in-chief have been Rudolf Fueter (1929–1949), J.J. Burckhardt (1950–1981), P. Gabriel (1982–1989), H. Kraft (1990–2005), and Eva Bayer-Fluckiger Eva Bayer-Fluckiger (born 25 June 1951) is a Hungarian and Swiss mathematician. She is an Emmy Noether Professor Emeritus at École Polytechnique Fédérale de Lausanne. She has worked on several topics in topology, algebra and number theory, e.g. ... (2006–present). Abstracting and indexing The journal is abstracted and indexed in: According to the '' Journal Citatio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Acta Scientiarum Mathematicarum
''Acta Scientiarum Mathematicarum'' is a Hungarian mathematical journal published by the János Bolyai Mathematical Institute (University of Szeged). It was established by Alfréd Haar and Frigyes Riesz in 1922. The current editor-in-chief is Lajos Molnár. The journal is abstracted and indexed in Scopus and Zentralblatt MATH zbMATH Open, formerly Zentralblatt MATH, is a major reviewing service providing reviews and abstracts for articles in pure and applied mathematics, produced by the Berlin office of FIZ Karlsruhe – Leibniz Institute for Information Infrastructur .... References External links * * {{ISSN, 0001-6969 Mathematics journals Publications established in 1922 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Abhandlungen Aus Dem Mathematischen Seminar Der Universität Hamburg
(English: ''Reports from the Mathematical Seminar of the University of Hamburg'') is a peer-reviewed mathematics journal published by Springer Science+Business Media. It publishes articles on pure mathematics and is scientifically coordinated by the ''Mathematisches Seminar'', an informal cooperation of mathematicians at the Universität Hamburg; its Managing Editors are Professors and Tobias Dyckerhoff. The journal is indexed by '' Mathematical Reviews'' and Zentralblatt MATH. History The ''Abhandlungen'' were set up as a new journal by Wilhelm Blaschke in 1922 at the newly created Department of Mathematics (called ''Mathematisches Seminar'') at the newly founded Hamburgische Universität. Blaschke invited both Hermann Weyl and David Hilbert to the ''Mathematisches Seminar'' (in 1920 and 1921, respectively) to deliver talk series on their views concerning the Foundations of Mathematics. These talks formed part of the early history of the Grundlagenkrise der Mathematik a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Springer Verlag
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second largest academic publisher with 65 staff in 1872.Chronology
". Springer Science+Business Media.
In 1964, Springer expanded its business internationally, o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Acta Mathematica
''Acta Mathematica'' is a peer-reviewed open-access scientific journal covering research in all fields of mathematics. According to Cédric Villani, this journal is "considered by many to be the most prestigious of all mathematical research journals".. According to the ''Journal Citation Reports'', the journal has a 2020 impact factor of 4.273, ranking it 5th out of 330 journals in the category "Mathematics". Publication history The journal was established by Gösta Mittag-Leffler in 1882 and is published by Institut Mittag-Leffler, a research institute for mathematics belonging to the Royal Swedish Academy of Sciences. The journal was printed and distributed by Springer from 2006 to 2016. Since 2017, Acta Mathematica has been published electronically and in print by International Press. Its electronic version is open access without publishing fees. Poincaré episode The journal's "most famous episode" (according to Villani) concerns Henri Poincaré, who won a prize offered ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Topological Group
In mathematics, topological groups are logically the combination of groups and topological spaces, i.e. they are groups and topological spaces at the same time, such that the continuity condition for the group operations connects these two structures together and consequently they are not independent from each other. Topological groups have been studied extensively in the period of 1925 to 1940. Haar and Weil (respectively in 1933 and 1940) showed that the integrals and Fourier series are special cases of a very wide class of topological groups. Topological groups, along with continuous group actions, are used to study continuous symmetries, which have many applications, for example, in physics. In functional analysis, every topological vector space is an additive topological group with the additional property that scalar multiplication is continuous; consequently, many results from the theory of topological groups can be applied to functional analysis. Formal definition ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Group Action (mathematics)
In mathematics, a group action on a space is a group homomorphism of a given group into the group of transformations of the space. Similarly, a group action on a mathematical structure is a group homomorphism of a group into the automorphism group of the structure. It is said that the group ''acts'' on the space or structure. If a group acts on a structure, it will usually also act on objects built from that structure. For example, the group of Euclidean isometries acts on Euclidean space and also on the figures drawn in it. For example, it acts on the set of all triangles. Similarly, the group of symmetries of a polyhedron acts on the vertices, the edges, and the faces of the polyhedron. A group action on a vector space is called a representation of the group. In the case of a finite-dimensional vector space, it allows one to identify many groups with subgroups of , the group of the invertible matrices of dimension over a field . The symmetric group acts on any set wit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Surface (topology)
In the part of mathematics referred to as topology, a surface is a two-dimensional manifold. Some surfaces arise as the boundaries of three-dimensional solids; for example, the sphere is the boundary of the solid ball. Other surfaces arise as graphs of functions of two variables; see the figure at right. However, surfaces can also be defined abstractly, without reference to any ambient space. For example, the Klein bottle is a surface that cannot be embedded in three-dimensional Euclidean space. Topological surfaces are sometimes equipped with additional information, such as a Riemannian metric or a complex structure, that connects them to other disciplines within mathematics, such as differential geometry and complex analysis. The various mathematical notions of surface can be used to model surfaces in the physical world. In general In mathematics, a surface is a geometrical shape that resembles a deformed plane. The most familiar examples arise as boundaries of solid ob ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Compact Space
In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space by making precise the idea of a space having no "punctures" or "missing endpoints", i.e. that the space not exclude any ''limiting values'' of points. For example, the open interval (0,1) would not be compact because it excludes the limiting values of 0 and 1, whereas the closed interval ,1would be compact. Similarly, the space of rational numbers \mathbb is not compact, because it has infinitely many "punctures" corresponding to the irrational numbers, and the space of real numbers \mathbb is not compact either, because it excludes the two limiting values +\infty and -\infty. However, the ''extended'' real number line ''would'' be compact, since it contains both infinities. There are many ways to make this heuristic notion precise. These ways usually agree in a metric space, but may not be equivalent in other topologic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]