Bruun's FFT Algorithm
   HOME





Bruun's FFT Algorithm
Bruun's algorithm is a fast Fourier transform (FFT) algorithm based on an unusual recursive polynomial-factorization approach, proposed for powers of two by G. Bruun in 1978 and generalized to arbitrary even composite sizes by H. Murakami in 1996. Because its operations involve only real coefficients until the last computation stage, it was initially proposed as a way to efficiently compute the discrete Fourier transform (DFT) of real data. Bruun's algorithm has not seen widespread use, however, as approaches based on the ordinary Cooley–Tukey FFT algorithm have been successfully adapted to real data with at least as much efficiency. Furthermore, there is evidence that Bruun's algorithm may be intrinsically less accurate than Cooley–Tukey in the face of finite numerical precision . Nevertheless, Bruun's algorithm illustrates an alternative algorithmic framework that can express both itself and the Cooley–Tukey algorithm, and thus provides an interesting perspective on FFTs tha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fast Fourier Transform
A fast Fourier transform (FFT) is an algorithm that computes the discrete Fourier transform (DFT) of a sequence, or its inverse (IDFT). A Fourier transform converts a signal from its original domain (often time or space) to a representation in the frequency domain and vice versa. The DFT is obtained by decomposing a sequence of values into components of different frequencies. This operation is useful in many fields, but computing it directly from the definition is often too slow to be practical. An FFT rapidly computes such transformations by Matrix decomposition, factorizing the DFT matrix into a product of Sparse matrix, sparse (mostly zero) factors. As a result, it manages to reduce the Computational complexity theory, complexity of computing the DFT from O(n^2), which arises if one simply applies the definition of DFT, to O(n \log n), where is the data size. The difference in speed can be enormous, especially for long data sets where may be in the thousands or millions. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polynomial
In mathematics, a polynomial is a Expression (mathematics), mathematical expression consisting of indeterminate (variable), indeterminates (also called variable (mathematics), variables) and coefficients, that involves only the operations of addition, subtraction, multiplication and exponentiation to nonnegative integer powers, and has a finite number of terms. An example of a polynomial of a single indeterminate is . An example with three indeterminates is . Polynomials appear in many areas of mathematics and science. For example, they are used to form polynomial equations, which encode a wide range of problems, from elementary word problem (mathematics education), word problems to complicated scientific problems; they are used to define polynomial functions, which appear in settings ranging from basic chemistry and physics to economics and social science; and they are used in calculus and numerical analysis to approximate other functions. In advanced mathematics, polynomials are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Discrete Fourier Transform
In mathematics, the discrete Fourier transform (DFT) converts a finite sequence of equally-spaced Sampling (signal processing), samples of a function (mathematics), function into a same-length sequence of equally-spaced samples of the discrete-time Fourier transform (DTFT), which is a complex number, complex-valued function of frequency. The interval at which the DTFT is sampled is the reciprocal of the duration of the input sequence.  An inverse DFT (IDFT) is a Fourier series, using the DTFT samples as coefficients of complex number, complex Sine wave, sinusoids at the corresponding DTFT frequencies. It has the same sample-values as the original input sequence. The DFT is therefore said to be a frequency domain representation of the original input sequence. If the original sequence spans all the non-zero values of a function, its DTFT is continuous (and periodic), and the DFT provides discrete samples of one cycle. If the original sequence is one cycle of a periodic fu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cooley–Tukey FFT Algorithm
The Cooley–Tukey algorithm, named after James Cooley, J. W. Cooley and John Tukey, is the most common fast Fourier transform (FFT) algorithm. It re-expresses the discrete Fourier transform (DFT) of an arbitrary composite number, composite size N = N_1N_2 in terms of ''N''1 smaller DFTs of sizes ''N''2, recursion, recursively, to reduce the computation time to O(''N'' log ''N'') for highly composite ''N'' (smooth numbers). Because of the algorithm's importance, specific variants and implementation styles have become known by their own names, as described below. Because the Cooley–Tukey algorithm breaks the DFT into smaller DFTs, it can be combined arbitrarily with any other algorithm for the DFT. For example, Rader's FFT algorithm, Rader's or Bluestein's FFT algorithm, Bluestein's algorithm can be used to handle large prime factors that cannot be decomposed by Cooley–Tukey, or the prime-factor FFT algorithm, prime-factor algorithm can be exploited for greater efficiency in s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Root Of Unity
In mathematics, a root of unity is any complex number that yields 1 when exponentiation, raised to some positive integer power . Roots of unity are used in many branches of mathematics, and are especially important in number theory, the theory of group characters, and the discrete Fourier transform. It is occasionally called a de Moivre number after French mathematician Abraham de Moivre. Roots of unity can be defined in any field (mathematics), field. If the characteristic of a field, characteristic of the field is zero, the roots are complex numbers that are also algebraic integers. For fields with a positive characteristic, the roots belong to a finite field, and, converse (logic), conversely, every nonzero element of a finite field is a root of unity. Any algebraically closed field contains exactly th roots of unity, except when is a multiple of the (positive) characteristic of the field. General definition An ''th root of unity'', where is a positive integer, is a nu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Polynomial Remainder Theorem
In algebra, the polynomial remainder theorem or little Bézout's theorem (named after Étienne Bézout) is an application of Euclidean division of polynomials. It states that, for every number r, any polynomial f(x) is the sum of f(r) and the product of x-r and a polynomial in x of degree one less than the degree of f. In particular, f(r) is the remainder of the Euclidean division of f(x) by x-r, and x-r is a divisor of f(x) if and only if f(r)=0, a property known as the factor theorem. Examples Example 1 Let f(x) = x^3 - 12x^2 - 42. Polynomial division of f(x) by (x-3) gives the quotient x^2 - 9x - 27 and the remainder -123. By the polynomial remainder theorem, f(3)=-123. Example 2 Proof that the polynomial remainder theorem holds for an arbitrary second degree polynomial f(x) = ax^2 + bx + c by using algebraic manipulation: \begin f(x)-f(r) &= ax^2+bx+c-(ar^2+br+c)\\ &= a(x^2-r^2)+ b(x-r)\\ &= a(x-r)(x+r)+b(x-r)\\ &= (x-r)(ax +ar+ b) \end So, f(x) = (x - r)(ax + ar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Degree Of A Polynomial
In mathematics, the degree of a polynomial is the highest of the degrees of the polynomial's monomials (individual terms) with non-zero coefficients. The degree of a term is the sum of the exponents of the variables that appear in it, and thus is a non-negative integer. For a univariate polynomial, the degree of the polynomial is simply the highest exponent occurring in the polynomial. The term order has been used as a synonym of ''degree'' but, nowadays, may refer to several other concepts (see Order of a polynomial (other)). For example, the polynomial 7x^2y^3 + 4x - 9, which can also be written as 7x^2y^3 + 4x^1y^0 - 9x^0y^0, has three terms. The first term has a degree of 5 (the sum of the powers 2 and 3), the second term has a degree of 1, and the last term has a degree of 0. Therefore, the polynomial has a degree of 5, which is the highest degree of any term. To determine the degree of a polynomial that is not in standard form, such as (x+1)^2 - (x-1)^2, one c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Relatively Prime Polynomials
Relative may refer to: General use *Kinship and family, the principle binding the most basic social units of society. If two people are connected by circumstances of birth, they are said to be ''relatives''. Philosophy * Relativism, the concept that points of view have no absolute truth or validity, having only relative, subjective value according to differences in perception and consideration, or relatively, as in the relative value of an object to a person * Relative value (philosophy) Economics * Relative value (economics) Popular culture Film and television * ''Relatively Speaking'' (1965 play), 1965 British play * ''Relatively Speaking'' (game show), late 1980s television game show * ''Everything's Relative'' (episode)#Yu-Gi-Oh! (Yu-Gi-Oh! Duel Monsters), 2000 Japanese anime ''Yu-Gi-Oh! Duel Monsters'' episode *'' Relative Values'', 2000 film based on the play of the same name. *'' It's All Relative'', 2003-4 comedy television series *''Intelligence is Relative'', tag li ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Chinese Remainder Theorem
In mathematics, the Chinese remainder theorem states that if one knows the remainders of the Euclidean division of an integer ''n'' by several integers, then one can determine uniquely the remainder of the division of ''n'' by the product of these integers, under the condition that the divisors are pairwise coprime (no two divisors share a common factor other than 1). The theorem is sometimes called Sunzi's theorem. Both names of the theorem refer to its earliest known statement that appeared in '' Sunzi Suanjing'', a Chinese manuscript written during the 3rd to 5th century CE. This first statement was restricted to the following example: If one knows that the remainder of ''n'' divided by 3 is 2, the remainder of ''n'' divided by 5 is 3, and the remainder of ''n'' divided by 7 is 2, then with no other information, one can determine the remainder of ''n'' divided by 105 (the product of 3, 5, and 7) without knowing the value of ''n''. In this example, the remainder is 23. More ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Power Of Two
A power of two is a number of the form where is an integer, that is, the result of exponentiation with number 2, two as the Base (exponentiation), base and integer  as the exponent. In the fast-growing hierarchy, is exactly equal to f_1^n(1). In the Hardy hierarchy, is exactly equal to H_(1). Powers of two with Sign (mathematics)#Terminology for signs, non-negative exponents are integers: , , and is two multiplication, multiplied by itself times. The first ten powers of 2 for non-negative values of are: :1, 2, 4, 8, 16 (number), 16, 32 (number), 32, 64 (number), 64, 128 (number), 128, 256 (number), 256, 512 (number), 512, ... By comparison, powers of two with negative exponents are fractions: for positive integer , is one half multiplied by itself times. Thus the first few negative powers of 2 are , , , , etc. Sometimes these are called ''inverse powers of two'' because each is the multiplicative inverse of a positive power of two. Base of the binary numeral sy ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Discrete Cosine Transform
A discrete cosine transform (DCT) expresses a finite sequence of data points in terms of a sum of cosine functions oscillating at different frequency, frequencies. The DCT, first proposed by Nasir Ahmed (engineer), Nasir Ahmed in 1972, is a widely used transformation technique in signal processing and data compression. It is used in most digital media, including digital images (such as JPEG and HEIF), digital video (such as MPEG and ), digital audio (such as Dolby Digital, MP3 and Advanced Audio Coding, AAC), digital television (such as SDTV, HDTV and Video on demand, VOD), digital radio (such as AAC+ and DAB+), and speech coding (such as AAC-LD, Siren (codec), Siren and Opus (audio format), Opus). DCTs are also important to numerous other applications in science and engineering, such as digital signal processing, telecommunication devices, reducing network bandwidth usage, and spectral methods for the numerical solution of partial differential equations. A DCT is a List of Fourier ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]