Brown–Peterson Cohomology
   HOME
*





Brown–Peterson Cohomology
In mathematics, Brown–Peterson cohomology is a generalized cohomology theory introduced by , depending on a choice of prime ''p''. It is described in detail by . Its representing spectrum is denoted by BP. Complex cobordism and Quillen's idempotent Brown–Peterson cohomology BP is a summand of MU(''p''), which is complex cobordism MU localized at a prime ''p''. In fact MU''(p)'' is a wedge product of suspensions of BP. For each prime ''p'', Daniel Quillen showed there is a unique idempotent map of ring spectra ε from MUQ(''p'') to itself, with the property that ε( P''n'' is P''n''if ''n''+1 is a power of ''p'', and 0 otherwise. The spectrum BP is the image of this idempotent ε. Structure of BP The coefficient ring \pi_*(\text) is a polynomial algebra over \Z_ on generators v_n in degrees 2(p^n-1) for n\ge 1. \text_*(\text) is isomorphic to the polynomial ring \pi_*(\text) _1, t_2, \ldots/math> over \pi_*(\text) with generators t_i in \text_(\text) of degrees 2 (p^i-1) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Generalized Cohomology Theory
In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewed as a method of assigning richer algebraic invariants to a space than homology. Some versions of cohomology arise by dualizing the construction of homology. In other words, cochains are functions on the group of chains in homology theory. From its beginning in topology, this idea became a dominant method in the mathematics of the second half of the twentieth century. From the initial idea of homology as a method of constructing algebraic invariants of topological spaces, the range of applications of homology and cohomology theories has spread throughout geometry and algebra. The terminology tends to hide the fact that cohomology, a contravariant theory, is more natural than homology in many applications. At a basic level, this has to do w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE