Bring's Curve
   HOME
*



picture info

Bring's Curve
In mathematics, Bring's curve (also called Bring's surface) is the curve given by the equations :v+w+x+y+z=v^2+w^2+x^2+y^2+z^2=v^3+w^3+x^3+y^3+z^3=0. It was named by after Erland Samuel Bring who studied a similar construction in 1786 in a Promotionschrift submitted to the University of Lund. The automorphism group of the curve is the symmetric group ''S''5 of order 120, given by permutations of the 5 coordinates. This is the largest possible automorphism group of a genus 4 complex curve. The curve can be realized as a triple cover of the sphere branched in 12 points, and is the Riemann surface associated to the small stellated dodecahedron. It has genus 4. The full group of symmetries (including reflections) is the direct product S_\times\mathbb_, which has order 240. Fundamental domain and systole Bring's curve can be obtained as a Riemann surface by associating sides of a hyperbolic icosagon (see fundamental polygon). The identification pattern is given in the adjoining ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Marble Floor Mosaic Basilica Of St Mark Vencice
Marble is a metamorphic rock composed of recrystallized carbonate minerals, most commonly calcite or dolomite. Marble is typically not foliated (layered), although there are exceptions. In geology, the term ''marble'' refers to metamorphosed limestone, but its use in stonemasonry more broadly encompasses unmetamorphosed limestone. Marble is commonly used for sculpture and as a building material. Etymology The word "marble" derives from the Ancient Greek (), from (), "crystalline rock, shining stone", perhaps from the verb (), "to flash, sparkle, gleam"; R. S. P. Beekes has suggested that a "Pre-Greek origin is probable". This stem is also the ancestor of the English word "marmoreal," meaning "marble-like." While the English term "marble" resembles the French , most other European languages (with words like "marmoreal") more closely resemble the original Ancient Greek. Physical origins Marble is a rock resulting from metamorphism of sedimentary carbonate rocks, most ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


First Hurwitz Triplet
In the mathematical theory of Riemann surfaces, the first Hurwitz triplet is a triple of distinct Hurwitz surfaces with the identical automorphism group of the lowest possible genus, namely 14 (genera 3 and 7 each admit a unique Hurwitz surface, respectively the Klein quartic and the Macbeath surface). The explanation for this phenomenon is arithmetic. Namely, in the ring of integers of the appropriate number field, the rational prime 13 splits as a product of three distinct prime ideals. The principal congruence subgroups defined by the triplet of primes produce Fuchsian groups corresponding to the triplet of Riemann surfaces. Arithmetic construction Let K be the real subfield of \mathbbrho/math> where \rho is a 7th-primitive root of unity. The ring of integers of ''K'' is \mathbbeta/math>, where \eta=2\cos(\tfrac). Let D be the quaternion algebra, or symbol algebra (\eta,\eta)_. Also Let \tau=1+\eta+\eta^2 and j'=\tfrac(1+\eta i + \tau j). Let \mathcal_\mathrm=\mathbbetai,j,j']. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Macbeath Surface
In Riemann surface theory and hyperbolic geometry, the Macbeath surface, also called Macbeath's curve or the Fricke–Macbeath curve, is the genus-7 Hurwitz surface. The automorphism group of the Macbeath surface is the simple group Projective linear group, PSL(2,8), consisting of 504 symmetries. Triangle group construction The surface's Fuchsian group can be constructed as the principal congruence subgroup of the (2,3,7) triangle group in a suitable tower of principal congruence subgroups. Here the choices of quaternion algebra and Hurwitz quaternion order are described at the triangle group page. Choosing the ideal \langle 2 \rangle in the ring of integers, the corresponding principal congruence subgroup defines this surface of genus 7. Its systolic geometry, systole is about 5.796, and the number of systolic loops is 126 according to R. Vogeler's calculations. It is possible to realize the resulting triangulated surface as a non-convex polyhedron without self-intersections. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bolza Surface
In mathematics, the Bolza surface, alternatively, complex algebraic Bolza curve (introduced by ), is a compact Riemann surface of genus 2 with the highest possible order of the conformal automorphism group in this genus, namely GL_2(3) of order 48 (the general linear group of 2\times 2 matrices over the finite field \mathbb_3). The full automorphism group (including reflections) is the semi-direct product GL_(3)\rtimes\mathbb_ of order 96. An affine model for the Bolza surface can be obtained as the locus of the equation :y^2=x^5-x in \mathbb C^2. The Bolza surface is the smooth completion of the affine curve. Of all genus 2 hyperbolic surfaces, the Bolza surface maximizes the length of the systole . As a hyperelliptic Riemann surface, it arises as the ramified double cover of the Riemann sphere, with ramification locus at the six vertices of a regular octahedron inscribed in the sphere, as can be readily seen from the equation above. The Bolza surface has attracted the attent ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Spectral Theory
In mathematics, spectral theory is an inclusive term for theories extending the eigenvector and eigenvalue theory of a single square matrix to a much broader theory of the structure of operators in a variety of mathematical spaces. It is a result of studies of linear algebra and the solutions of systems of linear equations and their generalizations. The theory is connected to that of analytic functions because the spectral properties of an operator are related to analytic functions of the spectral parameter. Mathematical background The name ''spectral theory'' was introduced by David Hilbert in his original formulation of Hilbert space theory, which was cast in terms of quadratic forms in infinitely many variables. The original spectral theorem was therefore conceived as a version of the theorem on principal axes of an ellipsoid, in an infinite-dimensional setting. The later discovery in quantum mechanics that spectral theory could explain features of atomic spectra was therefore ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Klein Quartic
In hyperbolic geometry, the Klein quartic, named after Felix Klein, is a compact Riemann surface of genus with the highest possible order automorphism group for this genus, namely order orientation-preserving automorphisms, and automorphisms if orientation may be reversed. As such, the Klein quartic is the Hurwitz surface of lowest possible genus; see Hurwitz's automorphisms theorem. Its (orientation-preserving) automorphism group is isomorphic to , the second-smallest non-abelian simple group after the alternating group A5. The quartic was first described in . Klein's quartic occurs in many branches of mathematics, in contexts including representation theory, homology theory, octonion multiplication, Fermat's Last Theorem, and the Stark–Heegner theorem on imaginary quadratic number fields of class number one; see for a survey of properties. Originally, the "Klein quartic" referred specifically to the subset of the complex projective plane defined by an algebraic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Systolic Geometry
In mathematics, systolic geometry is the study of systolic invariants of manifolds and polyhedra, as initially conceived by Charles Loewner and developed by Mikhail Gromov, Michael Freedman, Peter Sarnak, Mikhail Katz, Larry Guth, and others, in its arithmetical, ergodic, and topological manifestations. See also a slower-paced Introduction to systolic geometry. The notion of systole The ''systole'' of a compact metric space ''X'' is a metric invariant of ''X'', defined to be the least length of a noncontractible loop in ''X'' (i.e. a loop that cannot be contracted to a point in the ambient space ''X''). In more technical language, we minimize length over free loops representing nontrivial conjugacy classes in the fundamental group of ''X''. When ''X'' is a graph, the invariant is usually referred to as the girth, ever since the 1947 article on girth by W. T. Tutte. Possibly inspired by Tutte's article, Loewner started thinking about systolic questions on surfaces in the la ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


GAP (computer Algebra System)
GAP (Groups, Algorithms and Programming) is a computer algebra system for computational discrete algebra with particular emphasis on computational group theory. History GAP was developed at Lehrstuhl D für Mathematik (LDFM), Rheinisch-Westfälische Technische Hochschule Aachen, Germany from 1986 to 1997. After the retirement of Joachim Neubüser from the chair of LDFM, the development and maintenance of GAP was coordinated by the School of Mathematical and Computational Sciences at the University of St Andrews, Scotland. In the summer of 2005 coordination was transferred to an equal partnership of four 'GAP Centres', located at the University of St Andrews, RWTH Aachen, Technische Universität Braunschweig, and Colorado State University at Fort Collins; in April 2020, a fifth GAP Centre located at the TU Kaiserslautern was added. Distribution GAP and its sources, including packages (sets of user contributed programs), data library (including a list of small groups) and the m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Representation Theory
Representation theory is a branch of mathematics that studies abstract algebraic structures by ''representing'' their elements as linear transformations of vector spaces, and studies modules over these abstract algebraic structures. In essence, a representation makes an abstract algebraic object more concrete by describing its elements by matrices and their algebraic operations (for example, matrix addition, matrix multiplication). The theory of matrices and linear operators is well-understood, so representations of more abstract objects in terms of familiar linear algebra objects helps glean properties and sometimes simplify calculations on more abstract theories. The algebraic objects amenable to such a description include groups, associative algebras and Lie algebras. The most prominent of these (and historically the first) is the representation theory of groups, in which elements of a group are represented by invertible matrices in such a way that the group operation i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fundamental Domain Of Bring Curve
Fundamental may refer to: * Foundation of reality * Fundamental frequency, as in music or phonetics, often referred to as simply a "fundamental" * Fundamentalism, the belief in, and usually the strict adherence to, the simple or "fundamental" ideas based on faith in a system of thought * ''The Fundamentals'', a set of books important to Christian fundamentalism * Any of a number of fundamental theorems identified in mathematics, such as: ** Fundamental theorem of algebra, awe theorem regarding the factorization of polynomials ** Fundamental theorem of arithmetic, a theorem regarding prime factorization * Fundamental analysis, the process of reviewing and analyzing a company's financial statements to make better economic decisions Music * Fun-Da-Mental, a rap group * ''Fundamental'' (Bonnie Raitt album), 1998 * ''Fundamental'' (Pet Shop Boys album) * ''Fundamental'' (Puya album), 1999 * ''Fundamental'' (Mental As Anything album) * ''The Fundamentals'' (album) Other uses * " ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hurwitz Surface
In Riemann surface theory and hyperbolic geometry, a Hurwitz surface, named after Adolf Hurwitz, is a compact Riemann surface with precisely 84(''g'' − 1) automorphisms, where ''g'' is the genus of the surface. This number is maximal by virtue of Hurwitz's theorem on automorphisms . They are also referred to as Hurwitz curves, interpreting them as complex algebraic curves (complex dimension 1 = real dimension 2). The Fuchsian group of a Hurwitz surface is a finite index torsionfree normal subgroup of the (ordinary) (2,3,7) triangle group. The finite quotient group is precisely the automorphism group. Automorphisms of complex algebraic curves are ''orientation-preserving'' automorphisms of the underlying real surface; if one allows orientation-''reversing'' isometries, this yields a group twice as large, of order 168(''g'' − 1), which is sometimes of interest. A note on terminology – in this and other contexts, the "(2,3,7) triangle group" most often refers, not to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]