Brane
   HOME
*



picture info

Brane
In string theory and related theories such as supergravity theories, a brane is a physical object that generalizes the notion of a point particle to higher dimensions. Branes are dynamical objects which can propagate through spacetime according to the rules of quantum mechanics. They have mass and can have other attributes such as charge. Mathematically, branes can be represented within categories, and are studied in pure mathematics for insight into homological mirror symmetry and noncommutative geometry. ''p''-branes A point particle can be viewed as a brane of dimension zero, while a string can be viewed as a brane of dimension one. In addition to point particles and strings, it is possible to consider higher-dimensional branes. A ''p''-dimensional brane is generally called "''p''-brane". The term "''p''-brane" was coined by M. J. Duff ''et al.'' in 1988; "brane" comes from the word "membrane" which refers to a two-dimensional brane. A ''p''-brane sweeps out a (''p''+1) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

String Theory
In physics, string theory is a theoretical framework in which the point-like particles of particle physics are replaced by one-dimensional objects called strings. String theory describes how these strings propagate through space and interact with each other. On distance scales larger than the string scale, a string looks just like an ordinary particle, with its mass, charge, and other properties determined by the vibrational state of the string. In string theory, one of the many vibrational states of the string corresponds to the graviton, a quantum mechanical particle that carries the gravitational force. Thus, string theory is a theory of quantum gravity. String theory is a broad and varied subject that attempts to address a number of deep questions of fundamental physics. String theory has contributed a number of advances to mathematical physics, which have been applied to a variety of problems in black hole physics, early universe cosmology, nuclear physics, and conde ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




D-brane
In string theory, D-branes, short for ''Dirichlet membrane'', are a class of extended objects upon which open strings can end with Dirichlet boundary conditions, after which they are named. D-branes were discovered by Jin Dai, Leigh, and Polchinski, and independently by Hořava, in 1989. In 1995, Polchinski identified D-branes with black p-brane solutions of supergravity, a discovery that triggered the Second Superstring Revolution and led to both holographic and M-theory dualities. D-branes are typically classified by their spatial dimension, which is indicated by a number written after the ''D.'' A D0-brane is a single point, a D1-brane is a line (sometimes called a "D-string"), a D2-brane is a plane, and a D25-brane fills the highest-dimensional space considered in bosonic string theory. There are also instantonic D(–1)-branes, which are localized in both space and time. Theoretical background The equations of motion of string theory require that the endpoints of an o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


D3-brane Et D2-brane
In string theory, D-branes, short for ''Dirichlet membrane'', are a class of extended objects upon which open strings can end with Dirichlet boundary conditions, after which they are named. D-branes were discovered by Jin Dai, Leigh, and Polchinski, and independently by Hořava, in 1989. In 1995, Polchinski identified D-branes with black p-brane solutions of supergravity, a discovery that triggered the Second Superstring Revolution and led to both holographic and M-theory dualities. D-branes are typically classified by their spatial dimension, which is indicated by a number written after the ''D.'' A D0-brane is a single point, a D1-brane is a line (sometimes called a "D-string"), a D2-brane is a plane, and a D25-brane fills the highest-dimensional space considered in bosonic string theory. There are also instantonic D(–1)-branes, which are localized in both space and time. Theoretical background The equations of motion of string theory require that the endpoints of an op ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Higher Dimensions
In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coordinate is needed to specify a point on itfor example, the point at 5 on a number line. A surface, such as the boundary of a cylinder or sphere, has a dimension of two (2D) because two coordinates are needed to specify a point on itfor example, both a latitude and longitude are required to locate a point on the surface of a sphere. A two-dimensional Euclidean space is a two-dimensional space on the plane. The inside of a cube, a cylinder or a sphere is three-dimensional (3D) because three coordinates are needed to locate a point within these spaces. In classical mechanics, space and time are different categories and refer to absolute space and time. That conception of the world is a four-dimensional space but not the one that was found necessary ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Michael Duff (physicist)
Michael James Duff FRS, FRSA is a British theoretical physicist and pioneering theorist of supergravity who is the Principal of the Faculty of Physical Sciences and Abdus Salam Chair of Theoretical Physics at Imperial College London. Education Duff completed his Bachelor of Science in Physics Queen Mary College, London in 1969. He then went on to his Doctor of Philosophy in theoretical physics in 1972 at Imperial College London supervised by the Nobel Laureate Abdus Salam. He did postdoctoral fellowships at the International Centre for Theoretical Physics, University of Oxford, King's College London, Queen Mary College London and Brandeis University. Academic career After his postdoctoral fellowships, he returned to Imperial College in 1979 on a Science Research Council Advanced Fellowship and joined the faculty there in 1980. He took leave of absence to visit the Theory Division in CERN, first in 1982 and then again as a Staff Member from 1984 to 1987 when he became Senior Ph ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Supergravity
In theoretical physics, supergravity (supergravity theory; SUGRA for short) is a modern field theory that combines the principles of supersymmetry and general relativity; this is in contrast to non-gravitational supersymmetric theories such as the Minimal Supersymmetric Standard Model. Supergravity is the gauge theory of local supersymmetry. Since the supersymmetry (SUSY) generators form together with the Poincaré algebra a superalgebra, called the super-Poincaré algebra, supersymmetry as a gauge theory makes gravity arise in a natural way. Gravitons Like any field theory of gravity, a supergravity theory contains a spin-2 field whose quantum is the graviton. Supersymmetry requires the graviton field to have a superpartner. This field has spin 3/2 and its quantum is the gravitino. The number of gravitino fields is equal to the number of supersymmetries. History Gauge supersymmetry The first theory of local supersymmetry was proposed by Dick Arnowitt and Pran Nath in 1 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




String (physics)
In physics, a string is a physical entity postulated in string theory and related subjects. Unlike elementary particles, which are zero-dimensional or point-like by definition, strings are one-dimensional extended entities. Researchers often have an interest in string theories because theories in which the fundamental entities are strings rather than point particles automatically have many properties that some physicists expect to hold in a fundamental theory of physics. Most notably, a theory of strings that evolve and interact according to the rules of quantum mechanics will automatically describe quantum gravity. Overview In string theory, the strings may be open (forming a segment with two endpoints) or closed (forming a loop like a circle) and may have other special properties. Prior to 1995, there were five known versions of string theory incorporating the idea of supersymmetry, which differed in the type of strings and in other aspects. Today these different string theor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Point Particle
A point particle (ideal particle or point-like particle, often spelled pointlike particle) is an idealization of particles heavily used in physics. Its defining feature is that it lacks spatial extension; being dimensionless, it does not take up space. A point particle is an appropriate representation of any object whenever its size, shape, and structure are irrelevant in a given context. For example, from far enough away, any finite-size object will look and behave as a point-like object. Point masses and point charges, discussed below, are two common cases. When a point particle has an additive property, such as mass or charge, it is often represented mathematically by a Dirac delta function. In quantum mechanics, the concept of a point particle is complicated by the Heisenberg uncertainty principle, because even an elementary particle, with no internal structure, occupies a nonzero volume. For example, the atomic orbit of an electron in the hydrogen atom occupies a volume of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Topological String Theory
In theoretical physics, topological string theory is a version of string theory. Topological string theory appeared in papers by theoretical physicists, such as Edward Witten and Cumrun Vafa, by analogy with Witten's earlier idea of topological quantum field theory. Overview There are two main versions of topological string theory: the topological A-model and the topological B-model. The results of the calculations in topological string theory generically encode all holomorphic quantities within the full string theory whose values are protected by spacetime supersymmetry. Various calculations in topological string theory are closely related to Chern–Simons theory, Gromov–Witten invariants, mirror symmetry, geometric Langlands Program, and many other topics. The operators in topological string theory represent the algebra of operators in the full string theory that preserve a certain amount of supersymmetry. Topological string theory is obtained by a topological twist of t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Field Theory
In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and in condensed matter physics to construct models of quasiparticles. QFT treats particles as excited states (also called Quantum, quanta) of their underlying quantum field (physics), fields, which are more fundamental than the particles. The equation of motion of the particle is determined by minimization of the Lagrangian, a functional of fields associated with the particle. Interactions between particles are described by interaction terms in the Lagrangian (field theory), Lagrangian involving their corresponding quantum fields. Each interaction can be visually represented by Feynman diagrams according to perturbation theory (quantum mechanics), perturbation theory in quantum mechanics. History Quantum field theory emerged from the wo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Calabi Yau
Eugenio Calabi (born 11 May 1923) is an Italian-born American mathematician and the Thomas A. Scott Professor of Mathematics, Emeritus, at the University of Pennsylvania, specializing in differential geometry, partial differential equations and their applications. Academic career Calabi was a Putnam Fellow as an undergraduate at the Massachusetts Institute of Technology in 1946. He received his PhD in mathematics from Princeton University in 1950 after completing a doctoral dissertation, titled "Isometric complex analytic imbedding of Kahler manifolds", under the supervision of Salomon Bochner. He later obtained a professorship at the University of Minnesota. In 1964, Calabi joined the mathematics faculty at the University of Pennsylvania. Following the retirement of the German-born American mathematician Hans Rademacher, he was appointed to the Thomas A. Scott Professorship of Mathematics at the University of Pennsylvania in 1967. He won the Steele Prize from the American ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Wavefunction
A wave function in quantum physics is a mathematical description of the quantum state of an isolated quantum system. The wave function is a complex-valued probability amplitude, and the probabilities for the possible results of measurements made on the system can be derived from it. The most common symbols for a wave function are the Greek letters and (lower-case and capital psi, respectively). The wave function is a function of the degrees of freedom corresponding to some maximal set of commuting observables. Once such a representation is chosen, the wave function can be derived from the quantum state. For a given system, the choice of which commuting degrees of freedom to use is not unique, and correspondingly the domain of the wave function is also not unique. For instance, it may be taken to be a function of all the position coordinates of the particles over position space, or the momenta of all the particles over momentum space; the two are related by a Fourier trans ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]