Brandt Semigroup
   HOME
*





Brandt Semigroup
In mathematics, Brandt semigroups are completely 0-simple inverse semigroups. In other words, they are semigroups without proper ideals and which are also inverse semigroups. They are built in the same way as completely 0-simple semigroups: Let ''G'' be a group and I, J be non-empty sets. Define a matrix P of dimension , I, \times , J, with entries in G^0=G \cup \. Then, it can be shown that every 0-simple semigroup is of the form S=(I\times G^0\times J) with the operation (i,a,j)*(k,b,n)=(i,a p_ b,n). As Brandt semigroups are also inverse semigroups, the construction is more specialized and in fact, I = J (Howie 1995). Thus, a Brandt semigroup has the form S=(I\times G^0\times I) with the operation (i,a,j)*(k,b,n)=(i,a p_ b,n). Moreover, the matrix P is diagonal with only the identity element ''e'' of the group ''G'' in its diagonal. Remarks 1) The idempotents have the form (''i'', ''e'', ''i'') where ''e'' is the identity of ''G''. 2) There are equivalent ways to define the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Heinrich Brandt
Heinrich Brandt (8 November 1886, in Feudingen – 9 October 1954, in Halle, Saxony-Anhalt) was a German mathematician who was the first to develop the concept of a groupoid. Brandt studied at the University of Göttingen and, from 1910 to 1913, at the University of Strasbourg. In 1912 he attained his doctorate; he was a student of Heinrich Martin Weber. From 1913 he was assistant at the University of Karlsruhe (TH). He taught geometry and applied mathematics from 1921 at RWTH Aachen. From 1930 he was the chair for mathematics at the University of Halle. A Brandt matrix is a computational way of describing the Hecke operator action on theta series as modular forms. The theory was developed in part by Brandt's student Martin Eichler. It offers an algorithmic approach for machine computation (in that theta series span spaces of modular forms); the theory is now considered by means of Brandt modules. See also * Brandt semigroup External links * H.-J. Hoehnke and M.-A. Knus (2004A ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Inverse Semigroup
In group theory, an inverse semigroup (occasionally called an inversion semigroup) ''S'' is a semigroup in which every element ''x'' in ''S'' has a unique ''inverse'' ''y'' in ''S'' in the sense that ''x = xyx'' and ''y = yxy'', i.e. a regular semigroup in which every element has a unique inverse. Inverse semigroups appear in a range of contexts; for example, they can be employed in the study of partial symmetries. (The convention followed in this article will be that of writing a function on the right of its argument, e.g. ''x f'' rather than ''f(x)'', and composing functions from left to right—a convention often observed in semigroup theory.) Origins Inverse semigroups were introduced independently by Viktor Vladimirovich Wagner in the Soviet Union in 1952, and by Gordon Preston in the United Kingdom in 1954. Both authors arrived at inverse semigroups via the study of partial bijections of a set: a partial transformation ''α'' of a set ''X'' is a function from ''A'' to '' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Semigroup
In mathematics, a semigroup is an algebraic structure consisting of a set together with an associative internal binary operation on it. The binary operation of a semigroup is most often denoted multiplicatively: ''x''·''y'', or simply ''xy'', denotes the result of applying the semigroup operation to the ordered pair . Associativity is formally expressed as that for all ''x'', ''y'' and ''z'' in the semigroup. Semigroups may be considered a special case of magmas, where the operation is associative, or as a generalization of groups, without requiring the existence of an identity element or inverses. The closure axiom is implied by the definition of a binary operation on a set. Some authors thus omit it and specify three axioms for a group and only one axiom (associativity) for a semigroup. As in the case of groups or magmas, the semigroup operation need not be commutative, so ''x''·''y'' is not necessarily equal to ''y''·''x''; a well-known example of an operation that is as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Group (mathematics)
In mathematics, a group is a Set (mathematics), set and an Binary operation, operation that combines any two Element (mathematics), elements of the set to produce a third element of the set, in such a way that the operation is Associative property, associative, an identity element exists and every element has an Inverse element, inverse. These three axioms hold for Number#Main classification, number systems and many other mathematical structures. For example, the integers together with the addition operation form a group. The concept of a group and the axioms that define it were elaborated for handling, in a unified way, essential structural properties of very different mathematical entities such as numbers, geometric shapes and polynomial roots. Because the concept of groups is ubiquitous in numerous areas both within and outside mathematics, some authors consider it as a central organizing principle of contemporary mathematics. In geometry groups arise naturally in the study of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Special Classes Of Semigroups
In mathematics, a semigroup is a nonempty set together with an associative binary operation. A special class of semigroups is a class of semigroups satisfying additional properties or conditions. Thus the class of commutative semigroups consists of all those semigroups in which the binary operation satisfies the commutativity property that ''ab'' = ''ba'' for all elements ''a'' and ''b'' in the semigroup. The class of finite semigroups consists of those semigroups for which the underlying set has finite cardinality. Members of the class of Brandt semigroups are required to satisfy not just one condition but a set of additional properties. A large collection of special classes of semigroups have been defined though not all of them have been studied equally intensively. In the algebraic theory of semigroups, in constructing special classes, attention is focused only on those properties, restrictions and conditions which can be expressed in terms of the binary operations in the semigr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]