Bragg Plane
   HOME
*



picture info

Bragg Plane
In physics, a Bragg plane is a plane in reciprocal space which bisects a reciprocal lattice vector, \scriptstyle \mathbf, at right angles. The Bragg plane is defined as part of the Von Laue condition for diffraction peaks in x-ray diffraction crystallography. Considering the adjacent diagram, the arriving x-ray plane wave is defined by: :e^ = \cos + i\sin Where \scriptstyle \mathbf is the incident wave vector given by: :\mathbf = \frac\hat where \scriptstyle \lambda is the wavelength of the incident photon. While the Bragg formulation assumes a unique choice of direct lattice planes and specular reflection of the incident X-rays, the Von Laue formula only assumes monochromatic light and that each scattering center acts as a source of secondary wavelets as described by the Huygens principle. Each scattered wave contributes to a new plane wave given by: :\mathbf = \frac\hat^\prime The condition for constructive interference in the \scriptstyle \hat^\prime direction is tha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Huygens Principle
Huygens (also Huijgens, Huigens, Huijgen/Huygen, or Huigen) is a Dutch patronymic surname, meaning "son of Hugo". Most references to "Huygens" are to the polymath Christiaan Huygens. Notable people with the surname include: * Jan Huygen (1563–1611), Dutch voyager and historian * Constantijn Huygens (1596–1687), Dutch poet, diplomat, scholar and composer * Constantijn Huygens, Jr. (1628–1697), Dutch statesman, soldier, and telescope maker, son of Constantijn Huygens * Christiaan Huygens (1629–1695), Dutch mathematician, physicist and astronomer, son of Constantijn Huygens * Lodewijck Huygens (1631–1699), Dutch diplomat, the third son of Constantijn Huygens * Cornélie Huygens (1848–1902), Dutch writer, social democrat and feminist * Léon Huygens (1876–1918), Belgian painter * Jan Huijgen (1888–1964), Dutch speedwalker * Christiaan Huijgens (1897–1963), Dutch long-distance runner * Wil Huygen (1922–2009), Dutch children's and fantasy writer, e.g. of Gnomes Na ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fourier Analysis
In mathematics, Fourier analysis () is the study of the way general functions may be represented or approximated by sums of simpler trigonometric functions. Fourier analysis grew from the study of Fourier series, and is named after Joseph Fourier, who showed that representing a function as a sum of trigonometric functions greatly simplifies the study of heat transfer. The subject of Fourier analysis encompasses a vast spectrum of mathematics. In the sciences and engineering, the process of decomposing a function into oscillatory components is often called Fourier analysis, while the operation of rebuilding the function from these pieces is known as Fourier synthesis. For example, determining what component frequencies are present in a musical note would involve computing the Fourier transform of a sampled musical note. One could then re-synthesize the same sound by including the frequency components as revealed in the Fourier analysis. In mathematics, the term ''Fourier ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Geometry
Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is called a ''geometer''. Until the 19th century, geometry was almost exclusively devoted to Euclidean geometry, which includes the notions of point, line, plane, distance, angle, surface, and curve, as fundamental concepts. During the 19th century several discoveries enlarged dramatically the scope of geometry. One of the oldest such discoveries is Carl Friedrich Gauss' ("remarkable theorem") that asserts roughly that the Gaussian curvature of a surface is independent from any specific embedding in a Euclidean space. This implies that surfaces can be studied ''intrinsically'', that is, as stand-alone spaces, and has been expanded into the theory of manifolds and Riemannian geometry. Later in the 19th century, it appeared that geometries ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Crystallography
Crystallography is the experimental science of determining the arrangement of atoms in crystalline solids. Crystallography is a fundamental subject in the fields of materials science and solid-state physics (condensed matter physics). The word "crystallography" is derived from the Greek word κρύσταλλος (''krystallos'') "clear ice, rock-crystal", with its meaning extending to all solids with some degree of transparency, and γράφειν (''graphein'') "to write". In July 2012, the United Nations recognised the importance of the science of crystallography by proclaiming that 2014 would be the International Year of Crystallography. denote a direction vector (in real space). * Coordinates in ''angle brackets'' or ''chevrons'' such as <100> denote a ''family'' of directions which are related by symmetry operations. In the cubic crystal system for example, would mean 00 10 01/nowiki> or the negative of any of those directions. * Miller indices in ''parentheses'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Brillouin Zone
In mathematics and solid state physics, the first Brillouin zone is a uniquely defined primitive cell in reciprocal space. In the same way the Bravais lattice is divided up into Wigner–Seitz cells in the real lattice, the reciprocal lattice is broken up into Brillouin zones. The boundaries of this cell are given by planes related to points on the reciprocal lattice. The importance of the Brillouin zone stems from the description of waves in a periodic medium given by Bloch's theorem, in which it is found that the solutions can be completely characterized by their behavior in a single Brillouin zone. The first Brillouin zone is the locus of points in reciprocal space that are closer to the origin of the reciprocal lattice than they are to any other reciprocal lattice points (see the derivation of the Wigner–Seitz cell). Another definition is as the set of points in ''k''-space that can be reached from the origin without crossing any Bragg plane. Equivalently, this is the Vor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Kikuchi Line (solid State Physics)
Kikuchi lines are patterns of electrons formed by scattering. They pair up to form bands in electron diffraction from single crystal specimens, there to serve as "roads in orientation-space" for microscopists uncertain of what they are looking at. In transmission electron microscopes, they are easily seen in diffraction from regions of the specimen thick enough for multiple scattering. Unlike diffraction spots, which blink on and off as one tilts the crystal, Kikuchi bands mark orientation space with well-defined intersections (called zones or poles) as well as paths connecting one intersection to the next. Experimental and theoretical maps of Kikuchi band geometry, as well as their direct-space analogs e.g. bend contours, electron channeling patterns, and fringe visibility maps are increasingly useful tools in electron microscopy of crystalline and nanocrystalline materials. Because each Kikuchi line is associated with Bragg diffraction from one side of a single set of lattice pl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Powder Diffraction
Powder diffraction is a scientific technique using X-ray, neutron, or electron diffraction on powder or microcrystalline samples for structural characterization of materials. An instrument dedicated to performing such powder measurements is called a powder diffractometer. Powder diffraction stands in contrast to single crystal diffraction techniques, which work best with a single, well-ordered crystal. Explanation A diffractometer produces electromagnetic radiation (waves) with known wavelength and frequency, which is determined by their source. The source is often x-rays, because they are the only kind of energy with the optimal wavelength for inter-atomic-scale diffraction. However, electrons and neutrons are also common sources, with their frequency determined by their de Broglie wavelength. When these waves reach the sample, the incoming beam is either reflected off the surface, or can enter the lattice and be diffracted by the atoms present in the sample. If the atoms are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Reciprocal Lattice
In physics, the reciprocal lattice represents the Fourier transform of another lattice (group) (usually a Bravais lattice). In normal usage, the initial lattice (whose transform is represented by the reciprocal lattice) is a periodic spatial function in real space known as the ''direct lattice''. While the direct lattice exists in real space and is commonly understood to be a physical lattice (such as the lattice of a crystal), the reciprocal lattice exists in the space of spatial frequencies known as reciprocal space or k space, where \mathbf refers to the wavevector. In quantum physics, reciprocal space is closely related to momentum space according to the proportionality \mathbf = \hbar \mathbf, where \mathbf is the momentum vector and \hbar is the Planck constant. The reciprocal lattice of a reciprocal lattice is equivalent to the original direct lattice, because the defining equations are symmetrical with respect to the vectors in real and reciprocal space. Mathematically, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bravais Lattice
In geometry and crystallography, a Bravais lattice, named after , is an infinite array of discrete points generated by a set of discrete translation operations described in three dimensional space by : \mathbf = n_1 \mathbf_1 + n_2 \mathbf_2 + n_3 \mathbf_3, where the ''ni'' are any integers, and a''i'' are ''primitive translation vectors'', or ''primitive vectors'', which lie in different directions (not necessarily mutually perpendicular) and span the lattice. The choice of primitive vectors for a given Bravais lattice is not unique. A fundamental aspect of any Bravais lattice is that, for any choice of direction, the lattice appears exactly the same from each of the discrete lattice points when looking in that chosen direction. The Bravais lattice concept is used to formally define a ''crystalline arrangement'' and its (finite) frontiers. A crystal is made up of one or more atoms, called the ''basis'' or ''motif'', at each lattice point. The ''basis'' may consist of atoms, mol ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bragg Plane Illustration
Bragg may refer to: Places *Bragg City, Missouri, United States *Bragg, Texas, a ghost town, United States *Bragg, West Virginia, an unincorporated community, United States * Electoral district of Bragg, a state electoral district in South Australia, Australia *Bragg Islands, Graham Land, Antarctica *Bragg (crater), a crater on the Moon People *Bragg (surname), people with the surname Other uses * Bragg Institute, a neutron and X-ray scattering group in Australia *Bragg Box, a type of traveling museum exhibit invented by Laura Bragg * Bragg Communications, a Canadian cable television provider *Bragg Live Food Products, Inc, a health food company started by Paul Bragg *Bragg's Mill, Ashdon, an English windmill *Bragg House (other), various houses on the National Register of Historic Places * Bragg Memorial Stadium, a football stadium in Tallahassee, Florida Physics * Bragg's law * Distributed Bragg reflector *Fiber Bragg grating See also *Brag (other) * Fort Brag ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Specular Reflection
Specular reflection, or regular reflection, is the mirror-like reflection of waves, such as light, from a surface. The law of reflection states that a reflected ray of light emerges from the reflecting surface at the same angle to the surface normal as the incident ray, but on the opposing side of the surface normal in the plane formed by the incident and reflected rays. This behavior was first described by Hero of Alexandria ( AD c. 10–70). Specular reflection may be contrasted with diffuse reflection, in which light is scattered away from the surface in a range of directions. Law of reflection When light encounters a boundary of a material, it is affected by the optical and electronic response functions of the material to electromagnetic waves. Optical processes, which comprise reflection and refraction, are expressed by the difference of the refractive index on both sides of the boundary, whereas reflectance and absorption are the real and imaginary parts of the re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]