Bounded Linear Map
   HOME
*





Bounded Linear Map
In functional analysis and operator theory, a bounded linear operator is a linear transformation L : X \to Y between topological vector spaces (TVSs) X and Y that maps bounded subsets of X to bounded subsets of Y. If X and Y are normed vector spaces (a special type of TVS), then L is bounded if and only if there exists some M > 0 such that for all x \in X, \, Lx\, _Y \leq M \, x\, _X. The smallest such M is called the operator norm of L and denoted by \, L\, . A bounded operator between normed spaces is continuous and vice versa. The concept of a bounded linear operator has been extended from normed spaces to all topological vector spaces. Outside of functional analysis, when a function f : X \to Y is called "bounded" then this usually means that its image f(X) is a bounded subset of its codomain. A linear map has this property if and only if it is identically 0. Consequently, in functional analysis, when a linear operator is called "bounded" then it is never meant in this abs ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bounded Function
In mathematics, a function ''f'' defined on some set ''X'' with real or complex values is called bounded if the set of its values is bounded. In other words, there exists a real number ''M'' such that :, f(x), \le M for all ''x'' in ''X''. A function that is ''not'' bounded is said to be unbounded. If ''f'' is real-valued and ''f''(''x'') ≤ ''A'' for all ''x'' in ''X'', then the function is said to be bounded (from) above by ''A''. If ''f''(''x'') ≥ ''B'' for all ''x'' in ''X'', then the function is said to be bounded (from) below by ''B''. A real-valued function is bounded if and only if it is bounded from above and below. An important special case is a bounded sequence, where ''X'' is taken to be the set N of natural numbers. Thus a sequence ''f'' = (''a''0, ''a''1, ''a''2, ...) is bounded if there exists a real number ''M'' such that :, a_n, \le M for every natural number ''n''. The set of all bounded sequences forms the sequence space l^\infty. The definition of bound ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bornological Space
In mathematics, particularly in functional analysis, a bornological space is a type of space which, in some sense, possesses the minimum amount of structure needed to address questions of boundedness of sets and linear maps, in the same way that a topological space possesses the minimum amount of structure needed to address questions of continuity. Bornological spaces are distinguished by the property that a linear map from a bornological space into any locally convex spaces is continuous if and only if it is a bounded linear operator. Bornological spaces were first studied by George Mackey. The name was coined by Bourbaki after , the French word for " bounded". Bornologies and bounded maps A on a set X is a collection \mathcal of subsets of X that satisfy all the following conditions: \mathcal covers X; that is, X = \cup \mathcal; \mathcal is stable under inclusions; that is, if B \in \mathcal and A \subseteq B, then A \in \mathcal; \mathcal is stable under finite unions; ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Matrix (mathematics)
In mathematics, a matrix (plural matrices) is a rectangular array or table of numbers, symbols, or expressions, arranged in rows and columns, which is used to represent a mathematical object or a property of such an object. For example, \begin1 & 9 & -13 \\20 & 5 & -6 \end is a matrix with two rows and three columns. This is often referred to as a "two by three matrix", a "-matrix", or a matrix of dimension . Without further specifications, matrices represent linear maps, and allow explicit computations in linear algebra. Therefore, the study of matrices is a large part of linear algebra, and most properties and operations of abstract linear algebra can be expressed in terms of matrices. For example, matrix multiplication represents composition of linear maps. Not all matrices are related to linear algebra. This is, in particular, the case in graph theory, of incidence matrices, and adjacency matrices. ''This article focuses on matrices related to linear algebra, and, unle ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sequential Space
In topology and related fields of mathematics, a sequential space is a topological space whose topology can be completely characterized by its convergent/divergent sequences. They can be thought of as spaces that satisfy a very weak axiom of countability, and all first-countable spaces (especially metric spaces) are sequential. In any topological space (X, \tau), if a convergent sequence is contained in a closed set C, then the limit of that sequence must be contained in C as well. This property is known as sequential closure. Sequential spaces are precisely those topological spaces for which sequentially closed sets are in fact closed. (These definitions can also be rephrased in terms of sequentially open sets; see below.) Said differently, any topology can be described in terms of nets (also known as Moore–Smith sequences), but those sequences may be "too long" (indexed by too large an ordinal) to compress into a sequence. Sequential spaces are those topological space ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sequential Continuity
In mathematics, a continuous function is a function such that a continuous variation (that is a change without jump) of the argument induces a continuous variation of the value of the function. This means that there are no abrupt changes in value, known as '' discontinuities''. More precisely, a function is continuous if arbitrarily small changes in its value can be assured by restricting to sufficiently small changes of its argument. A discontinuous function is a function that is . Up until the 19th century, mathematicians largely relied on intuitive notions of continuity, and considered only continuous functions. The epsilon–delta definition of a limit was introduced to formalize the definition of continuity. Continuity is one of the core concepts of calculus and mathematical analysis, where arguments and values of functions are real and complex numbers. The concept has been generalized to functions between metric spaces and between topological spaces. The latter are the mo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Sequential Continuity At A Point
In topology and related fields of mathematics, a sequential space is a topological space whose topology can be completely characterized by its convergent/divergent sequences. They can be thought of as spaces that satisfy a very weak axiom of countability, and all first-countable spaces (especially metric spaces) are sequential. In any topological space (X, \tau), if a convergent sequence is contained in a closed set C, then the limit of that sequence must be contained in C as well. This property is known as sequential closure. Sequential spaces are precisely those topological spaces for which sequentially closed sets are in fact closed. (These definitions can also be rephrased in terms of sequentially open sets; see below.) Said differently, any topology can be described in terms of nets (also known as Moore–Smith sequences), but those sequences may be "too long" (indexed by too large an ordinal) to compress into a sequence. Sequential spaces are those topological space ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bornivorous Set
In functional analysis, a subset of a real or complex vector space X that has an associated vector bornology \mathcal is called bornivorous and a bornivore if it absorbs every element of \mathcal. If X is a topological vector space (TVS) then a subset S of X is bornivorous if it is bornivorous with respect to the von-Neumann bornology of X. Bornivorous sets play an important role in the definitions of many classes of topological vector spaces, particularly bornological spaces. Definitions If X is a TVS then a subset S of X is called and a if S absorbs every bounded subset of X. An absorbing disk in a locally convex space is bornivorous if and only if its Minkowski functional is locally bounded (i.e. maps bounded sets to bounded sets). Infrabornivorous sets and infrabounded maps A linear map between two TVSs is called if it maps Banach disks to bounded disks. A disk in X is called if it absorbs every Banach disk. An absorbing disk in a locally conv ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Absolutely Convex Set
In mathematics, a subset ''C'' of a real or complex vector space is said to be absolutely convex or disked if it is convex and balanced (some people use the term "circled" instead of "balanced"), in which case it is called a disk. The disked hull or the absolute convex hull of a set is the intersection of all disks containing that set. Definition A subset S of a real or complex vector space X is called a ' and is said to be ', ', and ' if any of the following equivalent conditions is satisfied: S is a convex and balanced set. for any scalar a and b, if , a, + , b, \leq 1 then a S + b S \subseteq S. for all scalars a, b, and c, if , a, + , b, \leq , c, , then a S + b S \subseteq c S. for any scalars a_1, \ldots, a_n and c, if , a_1, + \cdots + , a_n, \leq , c, then a_1 S + \cdots + a_n S \subseteq c S. for any scalars a_1, \ldots, a_n, if , a_1, + \cdots + , a_n, \leq 1 then a_1 S + \cdots + a_n S \subseteq S. The smallest convex (respectively, balanced) subset o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Locally Convex Topological Vector Space
In functional analysis and related areas of mathematics, locally convex topological vector spaces (LCTVS) or locally convex spaces are examples of topological vector spaces (TVS) that generalize normed spaces. They can be defined as topological vector spaces whose topology is generated by translations of balanced, absorbent, convex sets. Alternatively they can be defined as a vector space with a family of seminorms, and a topology can be defined in terms of that family. Although in general such spaces are not necessarily normable, the existence of a convex local base for the zero vector is strong enough for the Hahn–Banach theorem to hold, yielding a sufficiently rich theory of continuous linear functionals. Fréchet spaces are locally convex spaces that are completely metrizable (with a choice of complete metric). They are generalizations of Banach spaces, which are complete vector spaces with respect to a metric generated by a norm. History Metrizable topologies on vecto ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mackey Convergence
In mathematics, particularly in functional analysis, a bornological space is a type of space which, in some sense, possesses the minimum amount of structure needed to address questions of boundedness of sets and linear maps, in the same way that a topological space possesses the minimum amount of structure needed to address questions of continuity. Bornological spaces are distinguished by the property that a linear map from a bornological space into any locally convex spaces is continuous if and only if it is a bounded linear operator. Bornological spaces were first studied by George Mackey. The name was coined by Bourbaki after , the French word for " bounded". Bornologies and bounded maps A on a set X is a collection \mathcal of subsets of X that satisfy all the following conditions: \mathcal covers X; that is, X = \cup \mathcal; \mathcal is stable under inclusions; that is, if B \in \mathcal and A \subseteq B, then A \in \mathcal; \mathcal is stable under finite unions; ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Balanced Set
In linear algebra and related areas of mathematics a balanced set, circled set or disk in a vector space (over a field \mathbb with an absolute value function , \cdot , ) is a set S such that a S \subseteq S for all scalars a satisfying , a, \leq 1. The balanced hull or balanced envelope of a set S is the smallest balanced set containing S. The balanced core of a subset S is the largest balanced set contained in S. Balanced sets are ubiquitous in functional analysis because every neighborhood of the origin in every topological vector space (TVS) contains a balanced neighborhood of the origin and every convex neighborhood of the origin contains a balanced convex neighborhood of the origin (even if the TVS is not locally convex). This neighborhood can also be chosen to be an open set or, alternatively, a closed set. Definition Let X be a vector space over the field \mathbb of real or complex numbers. Notation If S is a set, a is a scalar, and B \subseteq \mathbb then let a S ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


LF Space
In mathematics, an ''LF''-space, also written (''LF'')-space, is a topological vector space (TVS) ''X'' that is a locally convex inductive limit of a countable inductive system (X_n, i_) of Fréchet spaces. This means that ''X'' is a direct limit of a direct system (X_n, i_) in the category of locally convex topological vector spaces and each X_n is a Fréchet space. The name ''LF'' stands for Limit of Fréchet spaces. If each of the bonding maps i_ is an embedding of TVSs then the ''LF''-space is called a strict ''LF''-space. This means that the subspace topology induced on by is identical to the original topology on . Some authors (e.g. Schaefer) define the term "''LF''-space" to mean "strict ''LF''-space," so when reading mathematical literature, it is recommended to always check how ''LF''-space is defined. Definition Inductive/final/direct limit topology Throughout, it is assumed that * \mathcal is either the category of topological spaces or some subcategory of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]