Boolean Grammar
   HOME
*





Boolean Grammar
Boolean grammars, introduced by , are a class of formal grammars studied in formal language theory. They extend the basic type of grammars, the context-free grammars, with conjunction and negation operations. Besides these explicit operations, Boolean grammars allow implicit disjunction represented by multiple rules for a single nonterminal symbol, which is the only logical connective expressible in context-free grammars. Conjunction and negation can be used, in particular, to specify intersection and complement of languages. An intermediate class of grammars known as conjunctive grammars allows conjunction and disjunction, but not negation. The rules of a Boolean grammar are of the form A \to \alpha_1 \And \ldots \And \alpha_m \And \lnot\beta_1 \And \ldots \And \lnot\beta_n where A is a nonterminal, m+n \ge 1 and \alpha_1, ..., \alpha_m, \beta_1, ..., \beta_n are strings formed of symbols in \Sigma and N. Informally, such a rule asserts that every string w over \Sigma that satis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Formal Grammar
In formal language theory, a grammar (when the context is not given, often called a formal grammar for clarity) describes how to form strings from a language's alphabet that are valid according to the language's syntax. A grammar does not describe the meaning of the strings or what can be done with them in whatever context—only their form. A formal grammar is defined as a set of production rules for such strings in a formal language. Formal language theory, the discipline that studies formal grammars and languages, is a branch of applied mathematics. Its applications are found in theoretical computer science, theoretical linguistics, formal semantics, mathematical logic, and other areas. A formal grammar is a set of rules for rewriting strings, along with a "start symbol" from which rewriting starts. Therefore, a grammar is usually thought of as a language generator. However, it can also sometimes be used as the basis for a "recognizer"—a function in computing that deter ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Formal Language
In logic, mathematics, computer science, and linguistics, a formal language consists of words whose letters are taken from an alphabet and are well-formed according to a specific set of rules. The alphabet of a formal language consists of symbols, letters, or tokens that concatenate into strings of the language. Each string concatenated from symbols of this alphabet is called a word, and the words that belong to a particular formal language are sometimes called ''well-formed words'' or ''well-formed formulas''. A formal language is often defined by means of a formal grammar such as a regular grammar or context-free grammar, which consists of its formation rules. In computer science, formal languages are used among others as the basis for defining the grammar of programming languages and formalized versions of subsets of natural languages in which the words of the language represent concepts that are associated with particular meanings or semantics. In computational complexity ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Context-free Grammars
In formal language theory, a context-free grammar (CFG) is a formal grammar whose production rules are of the form :A\ \to\ \alpha with A a ''single'' nonterminal symbol, and \alpha a string of terminals and/or nonterminals (\alpha can be empty). A formal grammar is "context-free" if its production rules can be applied regardless of the context of a nonterminal. No matter which symbols surround it, the single nonterminal on the left hand side can always be replaced by the right hand side. This is what distinguishes it from a context-sensitive grammar. A formal grammar is essentially a set of production rules that describe all possible strings in a given formal language. Production rules are simple replacements. For example, the first rule in the picture, :\langle\text\rangle \to \langle\text\rangle = \langle\text\rangle ; replaces \langle\text\rangle with \langle\text\rangle = \langle\text\rangle ;. There can be multiple replacement rules for a given nonterminal symbol. The l ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Logical Conjunction
In logic, mathematics and linguistics, And (\wedge) is the truth-functional operator of logical conjunction; the ''and'' of a set of operands is true if and only if ''all'' of its operands are true. The logical connective that represents this operator is typically written as \wedge or . A \land B is true if and only if A is true and B is true, otherwise it is false. An operand of a conjunction is a conjunct. Beyond logic, the term "conjunction" also refers to similar concepts in other fields: * In natural language, the denotation of expressions such as English "and". * In programming languages, the short-circuit and control structure. * In set theory, intersection. * In lattice theory, logical conjunction ( greatest lower bound). * In predicate logic, universal quantification. Notation And is usually denoted by an infix operator: in mathematics and logic, it is denoted by \wedge, or ; in electronics, ; and in programming languages, &, &&, or and. In Jan ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Negation
In logic, negation, also called the logical complement, is an operation that takes a proposition P to another proposition "not P", written \neg P, \mathord P or \overline. It is interpreted intuitively as being true when P is false, and false when P is true. Negation is thus a unary logical connective. It may be applied as an operation on notions, propositions, truth values, or semantic values more generally. In classical logic, negation is normally identified with the truth function that takes ''truth'' to ''falsity'' (and vice versa). In intuitionistic logic, according to the Brouwer–Heyting–Kolmogorov interpretation, the negation of a proposition P is the proposition whose proofs are the refutations of P. Definition ''Classical negation'' is an operation on one logical value, typically the value of a proposition, that produces a value of ''true'' when its operand is false, and a value of ''false'' when its operand is true. Thus if statement is true, then \neg P (pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Logical Disjunction
In logic, disjunction is a logical connective typically notated as \lor and read aloud as "or". For instance, the English language sentence "it is raining or it is snowing" can be represented in logic using the disjunctive formula R \lor S , assuming that R abbreviates "it is raining" and S abbreviates "it is snowing". In classical logic, disjunction is given a truth functional semantics according to which a formula \phi \lor \psi is true unless both \phi and \psi are false. Because this semantics allows a disjunctive formula to be true when both of its disjuncts are true, it is an ''inclusive'' interpretation of disjunction, in contrast with exclusive disjunction. Classical proof theoretical treatments are often given in terms of rules such as disjunction introduction and disjunction elimination. Disjunction has also been given numerous non-classical treatments, motivated by problems including Aristotle's sea battle argument, Heisenberg's uncertainty principle, as well ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Conjunctive Grammar
Conjunctive grammars are a class of formal grammars studied in formal language theory. They extend the basic type of grammars, the context-free grammars, with a conjunction operation. Besides explicit conjunction, conjunctive grammars allow implicit disjunction represented by multiple rules for a single nonterminal symbol, which is the only logical connective expressible in context-free grammars. Conjunction can be used, in particular, to specify intersection of languages. A further extension of conjunctive grammars known as Boolean grammars additionally allows explicit negation. The rules of a conjunctive grammar are of the form :A \to \alpha_1 \And \ldots \And \alpha_m where A is a nonterminal and \alpha_1, ..., \alpha_m are strings formed of symbols in \Sigma and V (finite sets of terminal and nonterminal symbols respectively). Informally, such a rule asserts that every string w over \Sigma that satisfies each of the syntactical conditions represented by \alpha_1, ..., \alpha_m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Language Equation
Language equations are mathematical statements that resemble equation, numerical equations, but the variables assume values of formal languages rather than numbers. Instead of arithmetic operations in numerical equations, the variables are joined by language operations. Among the most common operations on two languages ''A'' and ''B'' are the set union ''A'' ∪ ''B'', the set intersection ''A'' ∩ ''B'', and the Concatenation#Concatenation_of_sets_of_strings, concatenation ''A''⋅''B''. Finally, as an operation taking a single operand, the set ''A''* denotes the Kleene star of the language ''A''. Therefore language equations can be used to represent formal grammars, since the languages generated by the grammar must be the solution of a system of language equations. Language equations and context-free grammars Seymour Ginsburg, Ginsburg and Henry Gordon Rice, Rice gave an alternative definition of context-free grammars by language equations. To every context-free grammar G = (V, \ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Logic Programming
Logic programming is a programming paradigm which is largely based on formal logic. Any program written in a logic programming language is a set of sentences in logical form, expressing facts and rules about some problem domain. Major logic programming language families include Prolog, answer set programming (ASP) and Datalog. In all of these languages, rules are written in the form of ''clauses'': :H :- B1, …, Bn. and are read declaratively as logical implications: :H if B1 and … and Bn. H is called the ''head'' of the rule and B1, ..., Bn is called the ''body''. Facts are rules that have no body, and are written in the simplified form: :H. In the simplest case in which H, B1, ..., Bn are all atomic formulae, these clauses are called definite clauses or Horn clauses. However, there are many extensions of this simple case, the most important one being the case in which conditions in the body of a clause can also be negations of atomic formulas. Logic programming languag ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Language Equation
Language equations are mathematical statements that resemble equation, numerical equations, but the variables assume values of formal languages rather than numbers. Instead of arithmetic operations in numerical equations, the variables are joined by language operations. Among the most common operations on two languages ''A'' and ''B'' are the set union ''A'' ∪ ''B'', the set intersection ''A'' ∩ ''B'', and the Concatenation#Concatenation_of_sets_of_strings, concatenation ''A''⋅''B''. Finally, as an operation taking a single operand, the set ''A''* denotes the Kleene star of the language ''A''. Therefore language equations can be used to represent formal grammars, since the languages generated by the grammar must be the solution of a system of language equations. Language equations and context-free grammars Seymour Ginsburg, Ginsburg and Henry Gordon Rice, Rice gave an alternative definition of context-free grammars by language equations. To every context-free grammar G = (V, \ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


International Conference On Developments In Language Theory
DLT, the International Conference on Developments in Language Theory is an academic conference in the field of computer science held annually under the auspices of the European Association for Theoretical Computer Science. Like most theoretical computer science conferences its contributions are strongly peer-reviewed; the articles appear in proceedings published in Springer Lecture Notes in Computer Science. Extended versions of selected papers of each year's conference appear in international journals, such as Theoretical Computer Science and International Journal of Foundations of Computer Science. Topics of the conference Typical topics include: * grammars, acceptors and transducers for words, trees and graphs * algebraic theories of automata * algorithmic, combinatorial and algebraic properties of words and languages * variable length codes * symbolic dynamics * cellular automata * polyominoes and multidimensional patterns * decidability questions * image manipulation an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lecture Notes In Computer Science
''Lecture Notes in Computer Science'' is a series of computer science books published by Springer Science+Business Media since 1973. Overview The series contains proceedings, post-proceedings, monographs, and Festschrifts. In addition, tutorials, state-of-the-art surveys, and "hot topics" are increasingly being included. The series is indexed by DBLP. See also *''Monographiae Biologicae'', another monograph series published by Springer Science+Business Media *''Lecture Notes in Physics'' *''Lecture Notes in Mathematics'' *''Electronic Workshops in Computing ''Electronic Workshops in Computing'' (eWiC) is a publication series by the British Computer Society. The series provides free online access for conferences and workshops in the area of computing. For example, the EVA London Conference proceeding ...'', published by the British Computer Society References External links * Publications established in 1973 Computer science books Series of non-fiction books Springer ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]