Boolean Algebra Topics
   HOME
*





Boolean Algebra Topics
This is a list of topics around Boolean algebra and propositional logic. Articles with a wide scope and introductions * Algebra of sets Talk:Algebra of sets, * Boolean algebra (structure) Talk:Boolean algebra (structure), * Boolean algebra Talk:Boolean algebra (logic), * Field of sets Talk:Field of sets, * Logical connective Talk:logical connective, * Propositional calculus Talk:propositional calculus, Boolean functions and connectives * Ampheck Talk:Ampheck, * Analysis of Boolean functions Talk:Analysis of Boolean functions, * Balanced boolean function Talk:Balanced boolean function, * Bent function Talk:Bent function, * Boolean algebras canonically defined Talk:Boolean algebras canonically defined, * Boolean function Talk:Boolean function, * Boolean matrix Talk:Boolean matrix, * Boolean-valued function Talk:Boolean-valued function, * Conditioned disjunction Talk:Conditioned disjunction, * Evasive Boolean function Talk:Evasive Boolean function, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebra Of Sets
In mathematics, the algebra of sets, not to be confused with the mathematical structure of ''an'' algebra of sets, defines the properties and laws of sets, the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations. Any set of sets closed under the set-theoretic operations forms a Boolean algebra with the join operator being ''union'', the meet operator being ''intersection'', the complement operator being ''set complement'', the bottom being \varnothing and the top being the universe set under consideration. Fundamentals The algebra of sets is the set-theoretic analogue of the algebra of numbers. Just as arithmetic addition and multiplication are associative and commutative, so are set union and intersection; just as the arithmetic relation "less than or equal" is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Conditioned Disjunction
In logic, conditioned disjunction (sometimes called conditional disjunction) is a ternary logical connective introduced by Church. Given operands ''p'', ''q'', and ''r'', which represent truth-valued propositions, the meaning of the conditioned disjunction is given by: : , q, r~\leftrightarrow~(q \rightarrow p) \land (\neg q \rightarrow r) In words, is equivalent to: "if ''q'' then ''p'', else ''r''", or "''p'' or ''r'', according as ''q'' or not ''q''". This may also be stated as "''q'' implies ''p'', and not ''q'' implies ''r''". So, for any values of ''p'', ''q'', and ''r'', the value of is the value of ''p'' when ''q'' is true, and is the value of ''r'' otherwise. The conditioned disjunction is also equivalent to: :(q \land p) \lor (\neg q \land r) and has the same truth table as the ternary conditional operator ?: in many programming languages. In electronic logic terms, it may also be viewed as a single-bit multiplexer. In conjunction with truth constants denoting each tr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Material Conditional
The material conditional (also known as material implication) is an operation commonly used in logic. When the conditional symbol \rightarrow is interpreted as material implication, a formula P \rightarrow Q is true unless P is true and Q is false. Material implication can also be characterized inferentially by modus ponens, modus tollens, conditional proof, and classical reductio ad absurdum. Material implication is used in all the basic systems of classical logic as well as some nonclassical logics. It is assumed as a model of correct conditional reasoning within mathematics and serves as the basis for commands in many programming languages. However, many logics replace material implication with other operators such as the strict conditional and the variably strict conditional. Due to the paradoxes of material implication and related problems, material implication is not generally considered a viable analysis of conditional sentences in natural language. Notation In l ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Majority Function
In Boolean logic, the majority function (also called the median operator) is the Boolean function that evaluates to false when half or more arguments are false and true otherwise, i.e. the value of the function equals the value of the majority of the inputs. Representing true values as 1 and false values as 0, we may use the (real-valued) formula: :\langle p_1,\dots,p_n \rangle = \operatorname \left ( p_1,\dots,p_n \right ) = \left \lfloor \frac + \frac \right \rfloor. The "−1/2" in the formula serves to break ties in favor of zeros when the number of arguments ''n'' is even. If the term "−1/2" is omitted, the formula can be used for a function that breaks ties in favor of ones. Most applications deliberately force an odd number of inputs so they don't have to deal with the question of what happens when exactly half the inputs are 0 and exactly half the inputs are 1. The few systems that calculate the majority function on an even number of inputs are often biased to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Lupanov Representation
Lupanov's (''k'', ''s'')-representation, named after Oleg Lupanov, is a way of representing Boolean circuit In computational complexity theory and circuit complexity, a Boolean circuit is a mathematical model for combinational digital logic circuits. A formal language can be decided by a family of Boolean circuits, one circuit for each possible inp ...s so as to show that the reciprocal of the Shannon effect. Shannon had showed that almost all Boolean functions of ''n'' variables need a circuit of size at least 2''n''''n''−1. The reciprocal is that: All Boolean functions of ''n'' variables can be computed with a circuit of at most 2''n''''n''−1 + o(2''n''''n''−1) gates. Definition The idea is to represent the values of a boolean function ''ƒ'' in a table of 2''k'' rows, representing the possible values of the ''k'' first variables ''x''1, ..., ,''x''''k'', and 2''n''−''k'' columns representing the values of t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Logical Negation
In logic, negation, also called the logical complement, is an operation that takes a proposition P to another proposition "not P", written \neg P, \mathord P or \overline. It is interpreted intuitively as being true when P is false, and false when P is true. Negation is thus a unary logical connective. It may be applied as an operation on notions, propositions, truth values, or semantic values more generally. In classical logic, negation is normally identified with the truth function that takes ''truth'' to ''falsity'' (and vice versa). In intuitionistic logic, according to the Brouwer–Heyting–Kolmogorov interpretation, the negation of a proposition P is the proposition whose proofs are the refutations of P. Definition ''Classical negation'' is an operation on one logical value, typically the value of a proposition, that produces a value of ''true'' when its operand is false, and a value of ''false'' when its operand is true. Thus if statement is true, then \neg P (pro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Logical Implication
Logical consequence (also entailment) is a fundamental concept in logic, which describes the relationship between statements that hold true when one statement logically ''follows from'' one or more statements. A valid logical argument is one in which the conclusion is entailed by the premises, because the conclusion is the consequence of the premises. The philosophical analysis of logical consequence involves the questions: In what sense does a conclusion follow from its premises? and What does it mean for a conclusion to be a consequence of premises?Beall, JC and Restall, Greg, Logical Consequence' The Stanford Encyclopedia of Philosophy (Fall 2009 Edition), Edward N. Zalta (ed.). All of philosophical logic is meant to provide accounts of the nature of logical consequence and the nature of logical truth. Logical consequence is necessary and formal, by way of examples that explain with formal proof and models of interpretation. A sentence is said to be a logical consequ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Logical Equality
Logical equality is a logical operator that corresponds to equality in Boolean algebra and to the logical biconditional in propositional calculus. It gives the functional value ''true'' if both functional arguments have the same logical value, and '' false'' if they are different. It is customary practice in various applications, if not always technically precise, to indicate the operation of logical equality on the logical operands ''x'' and ''y'' by any of the following forms: :\begin x &\leftrightarrow y & x &\Leftrightarrow y & \mathrm Exy \\ x &\mathrm y & x &= y \end Some logicians, however, draw a firm distinction between a ''functional form'', like those in the left column, which they interpret as an application of a function to a pair of arguments — and thus a mere indication that the value of the compound expression depends on the values of the component expressions — and an ''equational form'', like those in the right column, which they interpret as an as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Logical Disjunction
In logic, disjunction is a logical connective typically notated as \lor and read aloud as "or". For instance, the English language sentence "it is raining or it is snowing" can be represented in logic using the disjunctive formula R \lor S , assuming that R abbreviates "it is raining" and S abbreviates "it is snowing". In classical logic, disjunction is given a truth functional semantics according to which a formula \phi \lor \psi is true unless both \phi and \psi are false. Because this semantics allows a disjunctive formula to be true when both of its disjuncts are true, it is an ''inclusive'' interpretation of disjunction, in contrast with exclusive disjunction. Classical proof theoretical treatments are often given in terms of rules such as disjunction introduction and disjunction elimination. Disjunction has also been given numerous non-classical treatments, motivated by problems including Aristotle's sea battle argument, Heisenberg's uncertainty principle, as well ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Logical Conjunction
In logic, mathematics and linguistics, And (\wedge) is the truth-functional operator of logical conjunction; the ''and'' of a set of operands is true if and only if ''all'' of its operands are true. The logical connective that represents this operator is typically written as \wedge or . A \land B is true if and only if A is true and B is true, otherwise it is false. An operand of a conjunction is a conjunct. Beyond logic, the term "conjunction" also refers to similar concepts in other fields: * In natural language, the denotation of expressions such as English "and". * In programming languages, the short-circuit and control structure. * In set theory, intersection. * In lattice theory, logical conjunction ( greatest lower bound). * In predicate logic, universal quantification. Notation And is usually denoted by an infix operator: in mathematics and logic, it is denoted by \wedge, or ; in electronics, ; and in programming languages, &, &&, or and. In Jan ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Logical Biconditional
In logic and mathematics, the logical biconditional, sometimes known as the material biconditional, is the logical connective (\leftrightarrow) used to conjoin two statements and to form the statement " if and only if ", where is known as the '' antecedent'', and the ''consequent''. This is often abbreviated as " iff ". Other ways of denoting this operator may be seen occasionally, as a double-headed arrow (↔ or ⇔ may be represented in Unicode in various ways), a prefixed E "E''pq''" (in Łukasiewicz notation or Bocheński notation), an equality sign (=), an equivalence sign (≡), or ''EQV''. It is logically equivalent to both (P \rightarrow Q) \land (Q \rightarrow P) and (P \land Q) \lor (\neg P \land \neg Q) , and the XNOR (exclusive nor) boolean operator, which means "both or neither". Semantically, the only case where a logical biconditional is different from a material conditional is the case where the hypothesis is false but the conclusion is true. In this case ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]