Bogoliubov Inner Product
   HOME
*





Bogoliubov Inner Product
The Bogoliubov inner product (also known as the Duhamel two-point function, Bogolyubov inner product, Bogoliubov scalar product, or Kubo–Mori–Bogoliubov inner product) is a special inner product in the space of operators. The Bogoliubov inner product appears in quantum statistical mechanicsD. P. SankovichOn the Bose condensation in some model of a nonideal Bose gas '' J. Math. Phys.'' 45, 4288 (2004). and is named after theoretical physicist Nikolay Bogoliubov. Definition Let A be a self-adjoint operator. The Bogoliubov inner product of any two operators X and Y is defined as : \langle X,Y\rangle_A=\int\limits_0^1 ^ X^\dagger^Yx The Bogoliubov inner product satisfies all the axioms of the inner product: it is sesquilinear, positive semidefinite (i.e., \langle X,X\rangle_A\ge 0), and satisfies the symmetry property \langle X,Y\rangle_A=(\langle Y,X\rangle_A)^* where \alpha^* is the complex conjugate of \alpha. In applications to quantum statistical mechanics, the operator A ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ryogo Kubo
was a Japanese mathematical physicist, best known for his works in statistical physics and non-equilibrium statistical mechanics. Work In the early 1950s, Kubo transformed research into the linear response properties of near-equilibrium condensed-matter systems, in particular the understanding of electron transport and conductivity, through the Kubo formalism, a Green's function approach to linear response theory for quantum systems. In 1977 Ryogo Kubo was awarded the Boltzmann Medal ''for his contributions to the theory of non-equilibrium statistical mechanics, and to the theory of fluctuation phenomena''. He is cited particularly for his work in the establishment of the basic relations between transport coefficients and equilibrium time correlation functions: relations with which his name is generally associated. Publications ;Books available in English *''Statistical mechanics : an advanced course with problems and solutions'' / Ryogo Kubo, in cooperation with Hiroshi Ichimu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Inner Product
In mathematics, an inner product space (or, rarely, a Hausdorff space, Hausdorff pre-Hilbert space) is a real vector space or a complex vector space with an operation (mathematics), operation called an inner product. The inner product of two vectors in the space is a Scalar (mathematics), scalar, often denoted with angle brackets such as in \langle a, b \rangle. Inner products allow formal definitions of intuitive geometric notions, such as lengths, angles, and orthogonality (zero inner product) of vectors. Inner product spaces generalize Euclidean vector spaces, in which the inner product is the dot product or ''scalar product'' of Cartesian coordinates. Inner product spaces of infinite Dimension (vector space), dimension are widely used in functional analysis. Inner product spaces over the Field (mathematics), field of complex numbers are sometimes referred to as unitary spaces. The first usage of the concept of a vector space with an inner product is due to Giuseppe Peano, in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Operator (mathematics)
In mathematics, an operator is generally a mapping or function that acts on elements of a space to produce elements of another space (possibly and sometimes required to be the same space). There is no general definition of an ''operator'', but the term is often used in place of ''function'' when the domain is a set of functions or other structured objects. Also, the domain of an operator is often difficult to be explicitly characterized (for example in the case of an integral operator), and may be extended to related objects (an operator that acts on functions may act also on differential equations whose solutions are functions that satisfy the equation). See Operator (physics) for other examples. The most basic operators are linear maps, which act on vector spaces. Linear operators refer to linear maps whose domain and range are the same space, for example \R^n to \R^n. Such operators often preserve properties, such as continuity. For example, differentiation and indef ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quantum Statistical Mechanics
Quantum statistical mechanics is statistical mechanics applied to quantum mechanical systems. In quantum mechanics a statistical ensemble (probability distribution over possible quantum states) is described by a density operator ''S'', which is a non-negative, self-adjoint, trace-class operator of trace 1 on the Hilbert space ''H'' describing the quantum system. This can be shown under various mathematical formalisms for quantum mechanics. One such formalism is provided by quantum logic. Expectation From classical probability theory, we know that the expectation of a random variable ''X'' is defined by its distribution D''X'' by : \mathbb(X) = \int_\mathbb \lambda \, d \, \operatorname_X(\lambda) assuming, of course, that the random variable is integrable or that the random variable is non-negative. Similarly, let ''A'' be an observable of a quantum mechanical system. ''A'' is given by a densely defined self-adjoint operator on ''H''. The spectral measure of ''A'' defined ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Journal Of Mathematical Physics
The ''Journal of Mathematical Physics'' is a peer-reviewed journal published monthly by the American Institute of Physics devoted to the publication of papers in mathematical physics. The journal was first published bimonthly beginning in January 1960; it became a monthly publication in 1963. The current editor is Jan Philip Solovej from University of Copenhagen The University of Copenhagen ( da, Københavns Universitet, KU) is a prestigious public university, public research university in Copenhagen, Copenhagen, Denmark. Founded in 1479, the University of Copenhagen is the second-oldest university in .... Its 2018 Impact Factor is 1.355 Abstracting and indexing This journal is indexed by the following services:Wellesley College Library
2013.


References


External links



[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Nikolay Bogoliubov
Nikolay Nikolayevich Bogolyubov (russian: Никола́й Никола́евич Боголю́бов; 21 August 1909 – 13 February 1992), also transliterated as Bogoliubov and Bogolubov, was a Soviet and Russian mathematician and theoretical physicist known for a significant contribution to quantum field theory, classical and quantum statistical mechanics, and the theory of dynamical systems; he was the recipient of the 1992 Dirac Medal. Biography Early life (1909–1921) Nikolay Bogolyubov was born on 21 August 1909 in Nizhny Novgorod, Russian Empire to Russian Orthodox Church priest and seminary teacher of theology, psychology and philosophy Nikolay Mikhaylovich Bogolyubov, and Olga Nikolayevna Bogolyubova, a teacher of music. The Bogolyubovs relocated to the village of Velikaya Krucha in the Poltava Governorate (now in Poltava Oblast, Ukraine) in 1919, where the young Nikolay Bogolyubov began to study physics and mathematics. The family soon moved to Kiev in 1921, wher ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Self-adjoint Operator
In mathematics, a self-adjoint operator on an infinite-dimensional complex vector space ''V'' with inner product \langle\cdot,\cdot\rangle (equivalently, a Hermitian operator in the finite-dimensional case) is a linear map ''A'' (from ''V'' to itself) that is its own adjoint. If ''V'' is finite-dimensional with a given orthonormal basis, this is equivalent to the condition that the matrix of ''A'' is a Hermitian matrix, i.e., equal to its conjugate transpose ''A''. By the finite-dimensional spectral theorem, ''V'' has an orthonormal basis such that the matrix of ''A'' relative to this basis is a diagonal matrix with entries in the real numbers. In this article, we consider generalizations of this concept to operators on Hilbert spaces of arbitrary dimension. Self-adjoint operators are used in functional analysis and quantum mechanics. In quantum mechanics their importance lies in the Dirac–von Neumann formulation of quantum mechanics, in which physical observables such as positi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sesquilinear Form
In mathematics, a sesquilinear form is a generalization of a bilinear form that, in turn, is a generalization of the concept of the dot product of Euclidean space. A bilinear form is linear in each of its arguments, but a sesquilinear form allows one of the arguments to be "twisted" in a semilinear manner, thus the name; which originates from the Latin numerical prefix ''sesqui-'' meaning "one and a half". The basic concept of the dot product – producing a scalar from a pair of vectors – can be generalized by allowing a broader range of scalar values and, perhaps simultaneously, by widening the definition of a vector. A motivating special case is a sesquilinear form on a complex vector space, . This is a map that is linear in one argument and "twists" the linearity of the other argument by complex conjugation (referred to as being antilinear in the other argument). This case arises naturally in mathematical physics applications. Another important case allows the scalars to co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hamiltonian (quantum Mechanics)
Hamiltonian may refer to: * Hamiltonian mechanics, a function that represents the total energy of a system * Hamiltonian (quantum mechanics), an operator corresponding to the total energy of that system ** Dyall Hamiltonian, a modified Hamiltonian with two-electron nature ** Molecular Hamiltonian, the Hamiltonian operator representing the energy of the electrons and nuclei in a molecule * Hamiltonian (control theory), a function used to solve a problem of optimal control for a dynamical system * Hamiltonian path, a path in a graph that visits each vertex exactly once * Hamiltonian group, a non-abelian group the subgroups of which are all normal * Hamiltonian economic program, the economic policies advocated by Alexander Hamilton, the first United States Secretary of the Treasury See also * Alexander Hamilton (1755 or 1757–1804), American statesman and one of the Founding Fathers of the US * Hamilton (other) Hamilton may refer to: People * Hamilton (name), a common ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Inverse Temperature
In statistical thermodynamics, thermodynamic beta, also known as coldness, is the reciprocal of the thermodynamic temperature of a system:\beta = \frac (where is the temperature and is Boltzmann constant).J. Meixner (1975) "Coldness and Temperature", ''Archive for Rational Mechanics and Analysis'' 57:3, 281-29abstract It was originally introduced in 1971 (as "coldness function") by , one of the proponents of the rational thermodynamics school of thought, based on earlier proposals for a "reciprocal temperature" function.Day, W.A. and Gurtin, Morton E. (1969) "On the symmetry of the conductivity tensor and other restrictions in the nonlinear theory of heat conduction", ''Archive for Rational Mechanics and Analysis'' 33:1, 26-32 (Springer-Verlag)abstractJ. Castle, W. Emmenish, R. Henkes, R. Miller, and J. Rayne (1965) Science by Degrees: ''Temperature from Zero to Zero'' (Westinghouse Search Book Series, Walker and Company, New York). Thermodynamic beta has units reciprocal to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Mechanics
Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, quantum field theory, quantum technology, and quantum information science. Classical physics, the collection of theories that existed before the advent of quantum mechanics, describes many aspects of nature at an ordinary (macroscopic) scale, but is not sufficient for describing them at small (atomic and subatomic) scales. Most theories in classical physics can be derived from quantum mechanics as an approximation valid at large (macroscopic) scale. Quantum mechanics differs from classical physics in that energy, momentum, angular momentum, and other quantities of a bound system are restricted to discrete values ( quantization); objects have characteristics of both particles and waves (wave–particle duality); and there are limits to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]