Bockstein Homomorphism
   HOME
*





Bockstein Homomorphism
In homological algebra, the Bockstein homomorphism, introduced by , is a connecting homomorphism associated with a short exact sequence :0 \to P \to Q \to R \to 0 of abelian groups, when they are introduced as coefficients into a chain complex ''C'', and which appears in the homology groups as a homomorphism reducing degree by one, :\beta\colon H_i(C, R) \to H_(C,P). To be more precise, ''C'' should be a complex of free, or at least torsion-free, abelian groups, and the homology is of the complexes formed by tensor product with ''C'' (some flat module condition should enter). The construction of β is by the usual argument (snake lemma). A similar construction applies to cohomology groups, this time increasing degree by one. Thus we have :\beta\colon H^i(C, R) \to H^(C,P). The Bockstein homomorphism \beta associated to the coefficient sequence :0 \to \Z/p\Z\to \Z/p^2\Z\to \Z/p\Z\to 0 is used as one of the generators of the Steenrod algebra. This Bockstein homomorphism has ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Homological Algebra
Homological algebra is the branch of mathematics that studies homology in a general algebraic setting. It is a relatively young discipline, whose origins can be traced to investigations in combinatorial topology (a precursor to algebraic topology) and abstract algebra (theory of modules and syzygies) at the end of the 19th century, chiefly by Henri Poincaré and David Hilbert. Homological algebra is the study of homological functors and the intricate algebraic structures that they entail; its development was closely intertwined with the emergence of category theory. A central concept is that of chain complexes, which can be studied through both their homology and cohomology. Homological algebra affords the means to extract information contained in these complexes and present it in the form of homological invariants of rings, modules, topological spaces, and other 'tangible' mathematical objects. A powerful tool for doing this is provided by spectral sequences. It has played a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Zig-zag Lemma
In mathematics, particularly homological algebra, the zig-zag lemma asserts the existence of a particular long exact sequence in the homology groups of certain chain complexes. The result is valid in every abelian category. Statement In an abelian category (such as the category of abelian groups or the category of vector spaces over a given field), let (\mathcal,\partial_), (\mathcal,\partial_') and (\mathcal,\partial_'') be chain complexes that fit into the following short exact sequence: : 0 \longrightarrow \mathcal \mathrel \mathcal \mathrel \mathcal\longrightarrow 0 Such a sequence is shorthand for the following commutative diagram: commutative diagram representation of a short exact sequence of chain complexes where the rows are exact sequences and each column is a chain complex. The zig-zag lemma asserts that there is a collection of boundary maps : \delta_n : H_n(\mathcal) \longrightarrow H_(\mathcal), that makes the following sequence exact: long exact seque ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Springer-Verlag
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second largest academic publisher with 65 staff in 1872.Chronology
". Springer Science+Business Media.
In 1964, Springer expanded its business internationall ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE