Blooming (geometry)
   HOME
*



picture info

Blooming (geometry)
In the geometry of convex polyhedra, blooming or continuous blooming is a continuous three-dimensional motion of the surface of the polyhedron, cut to form a polyhedral net, from the polyhedron into a flat and non-self-overlapping placement of the net in a plane. As in rigid origami, the polygons of the net must remain individually flat throughout the motion, and are not allowed to intersect or cross through each other. A blooming, reversed to go from the flat net to a polyhedron, can be thought of intuitively as a way to fold the polyhedron from a paper net without bending the paper except at its designated creases. An early work on blooming by Biedl, Lubiw, and Sun from 1999 showed that some nets for non-convex but topologically spherical polyhedra have no blooming. The question of whether every convex polyhedron admits a net with a blooming was posed by Robert Connelly, and came to be known as Connelly’s blooming conjecture. More specifically, Miller and Pak suggested in 200 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Net Of Dodecahedron
Net or net may refer to: Mathematics and physics * Net (mathematics), a filter-like topological generalization of a sequence * Net, a linear system of divisors of dimension 2 * Net (polyhedron), an arrangement of polygons that can be folded up to form a polyhedron * An incidence structure consisting of points and parallel classes of lines * Operator algebras in Local quantum field theory Others * Net (command), an operating system command * Net (device), a grid-like device or object such as that used in fishing or sports, commonly made from woven fibers * ''Net'' (film), 2021 Indian thriller drama film * Net (textile), a textile in which the warp and weft yarns are looped or knotted at their intersections * Net (economics) (nett), the sum or difference of two or more economic variables ** Net income (nett), an entity's income minus cost of goods sold, expenses and taxes for an accounting period * In electronic design, a connection in a netlist * In computing, the Internet * ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Convex Polyhedron
A convex polytope is a special case of a polytope, having the additional property that it is also a convex set contained in the n-dimensional Euclidean space \mathbb^n. Most texts. use the term "polytope" for a bounded convex polytope, and the word "polyhedron" for the more general, possibly unbounded object. Others''Mathematical Programming'', by Melvyn W. Jeter (1986) p. 68/ref> (including this article) allow polytopes to be unbounded. The terms "bounded/unbounded convex polytope" will be used below whenever the boundedness is critical to the discussed issue. Yet other texts identify a convex polytope with its boundary. Convex polytopes play an important role both in various branches of mathematics and in applied areas, most notably in linear programming. In the influential textbooks of Grünbaum and Ziegler on the subject, as well as in many other texts in discrete geometry, convex polytopes are often simply called "polytopes". Grünbaum points out that this is solely to avoi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Net (polyhedron)
In geometry, a net of a polyhedron is an arrangement of non-overlapping edge-joined polygons in the plane which can be folded (along edges) to become the faces of the polyhedron. Polyhedral nets are a useful aid to the study of polyhedra and solid geometry in general, as they allow for physical models of polyhedra to be constructed from material such as thin cardboard. An early instance of polyhedral nets appears in the works of Albrecht Dürer, whose 1525 book ''A Course in the Art of Measurement with Compass and Ruler'' (''Unterweysung der Messung mit dem Zyrkel und Rychtscheyd '') included nets for the Platonic solids and several of the Archimedean solids. These constructions were first called nets in 1543 by Augustin Hirschvogel. Existence and uniqueness Many different nets can exist for a given polyhedron, depending on the choices of which edges are joined and which are separated. The edges that are cut from a convex polyhedron to form a net must form a spanning tree of t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rigid Origami
Rigid origami is a branch of origami which is concerned with folding structures using flat rigid sheets joined by hinges. That is, unlike in traditional origami, the panels of the paper cannot be bent during the folding process; they must remain flat at all times, and the paper only folded along its hinges. A rigid origami model would still be foldable if it was made from glass sheets with hinges in place of its crease lines. However, there is no requirement that the structure start as a single flat sheet – for instance shopping bags with flat bottoms are studied as part of rigid origami. Rigid origami is a part of the study of the mathematics of paper folding, and rigid origami structures can be considered as a type of mechanical linkage. Rigid origami has great practical utility. Mathematics The number of standard origami bases that can be folded using rigid origami is restricted by its rules. Rigid origami does not have to follow the Huzita–Hatori axioms, the fold lin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Robert Connelly
Robert Connelly (born July 15, 1942) is a mathematician specializing in discrete geometry and rigidity theory. Connelly received his Ph.D. from University of Michigan in 1969. He is currently a professor at Cornell University. Connelly is best known for discovering embedded flexible polyhedra. One such polyhedron is in the National Museum of American History. His recent interests include tensegrities and the carpenter's rule problem. In 2012 he became a fellow of the American Mathematical Society. Asteroid 4816 Connelly, discovered by Edward Bowell at Lowell Observatory 1981, was named after Robert Connelly. The official was published by the Minor Planet Center on 18 February 1992 (). Author Connelly has authored or co-authored several articles on mathematics, including ''Conjectures and open questions in rigidity''; ''A flexible sphere''; and ''A counterexample to the rigidity conjecture for polyhedra''. References External links Personal home page* (with a pictu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Source Unfolding
In computational geometry, the source unfolding of a convex polyhedron is a net obtained by cutting the polyhedron along the cut locus of a point on the surface of the polyhedron. The cut locus of a point p consists of all points on the surface that have two or more shortest geodesics to p. For every convex polyhedron, and every choice of the point p on its surface, cutting the polyhedron on the cut locus will produce a result that can be unfolded into a flat plane, producing the source unfolding. The resulting net may, however, cut across some of the faces of the polyhedron rather than only cutting along its edges. The source unfolding can also be continuously transformed from the polyhedron to its flat net, keeping flat the parts of the net that do not lie along edges of the polyhedron, as a blooming of the polyhedron. The unfolded shape of the source unfolding is always a star-shaped polygon, with all of its points visible by straight line segments from the image of p; this is in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cut Locus
The cut locus is a mathematical structure defined for a closed set S in a space X as the closure of the set of all points p\in X that have two or more distinct shortest paths in X from S to p. Definition in a special case Let X be a metric space, equipped with the metric \mathrm_X, and let x \in X be a point. The cut locus of x in X (\operatorname_X(x)), is the locus of all the points in X for which there exists at least two distinct shortest paths to x in X. More formally, y \in \operatorname_X(x) for a point y in X if and only if there exists two paths \gamma,\gamma':I\to X such that \gamma(0) = \gamma'(0) = x, \gamma(1)=\gamma'(1)=y, , \gamma, =, \gamma', = \mathrm_X(x,y), and the trajectories of the two paths are distinct. Examples For example, let ''S'' be the boundary of a simple polygon, and ''X'' the interior of the polygon. Then the cut locus is the medial axis of the polygon. The points on the medial axis are centers of maximal disks that touch the polygon bounda ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Archimedean Solid
In geometry, an Archimedean solid is one of the 13 solids first enumerated by Archimedes. They are the convex uniform polyhedra composed of regular polygons meeting in identical vertices, excluding the five Platonic solids (which are composed of only one type of polygon), excluding the prisms and antiprisms, and excluding the pseudorhombicuboctahedron. They are a subset of the Johnson solids, whose regular polygonal faces do not need to meet in identical vertices. "Identical vertices" means that each two vertices are symmetric to each other: A global isometry of the entire solid takes one vertex to the other while laying the solid directly on its initial position. observed that a 14th polyhedron, the elongated square gyrobicupola (or pseudo-rhombicuboctahedron), meets a weaker definition of an Archimedean solid, in which "identical vertices" means merely that the faces surrounding each vertex are of the same types (i.e. each vertex looks the same from close up), so only a lo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Motion Planning
Motion planning, also path planning (also known as the navigation problem or the piano mover's problem) is a computational problem to find a sequence of valid configurations that moves the object from the source to destination. The term is used in computational geometry, computer animation, robotics and computer games. For example, consider navigating a mobile robot inside a building to a distant waypoint. It should execute this task while avoiding walls and not falling down stairs. A motion planning algorithm would take a description of these tasks as input, and produce the speed and turning commands sent to the robot's wheels. Motion planning algorithms might address robots with a larger number of joints (e.g., industrial manipulators), more complex tasks (e.g. manipulation of objects), different constraints (e.g., a car that can only drive forward), and uncertainty (e.g. imperfect models of the environment or robot). Motion planning has several robotics applications, such ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Computational Geometry (journal)
''Computational Geometry'', also known as ''Computational Geometry: Theory and Applications'', is a peer-reviewed mathematics journal for research in theoretical and applied computational geometry, its applications, techniques, and design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects, as well as fundamental problems in various areas of application of computational geometry: in computer graphics, pattern recognition, image processing, robotics, electronic design automation, CAD/CAM, and geographical information systems. The journal was founded in 1991 by Jörg-Rüdiger Sack and Jorge Urrutia.. It is indexed by ''Mathematical Reviews'', Zentralblatt MATH, Science Citation Index, and Current Contents ''Current Contents'' is a rapid alerting service database from Clarivate Analytics, formerly the Institute for Scientific Information and Thomson Reuters. It is publis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Graphs And Combinatorics
''Graphs and Combinatorics'' (ISSN 0911-0119, abbreviated ''Graphs Combin.'') is a peer-reviewed academic journal in graph theory, combinatorics, and discrete geometry published by Springer Japan. Its editor-in-chief is Katsuhiro Ota of Keio University. The journal was first published in 1985. Its founding editor in chief was Hoon Heng Teh of Singapore, the president of the Southeast Asian Mathematics Society, and its managing editor was Jin Akiyama. Originally, it was subtitled "An Asian Journal". In most years since 1999, it has been ranked as a second-quartile journal in discrete mathematics and theoretical computer science computer science (TCS) is a subset of general computer science and mathematics that focuses on mathematical aspects of computer science such as the theory of computation, lambda calculus, and type theory. It is difficult to circumscribe the ... by SCImago Journal Rank.. References {{reflist Publications established in 1985 Combinatorics jo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Discrete & Computational Geometry
'' Discrete & Computational Geometry'' is a peer-reviewed mathematics journal published quarterly by Springer. Founded in 1986 by Jacob E. Goodman and Richard M. Pollack, the journal publishes articles on discrete geometry and computational geometry. Abstracting and indexing The journal is indexed in: * ''Mathematical Reviews'' * ''Zentralblatt MATH'' * ''Science Citation Index'' * ''Current Contents''/Engineering, Computing and Technology Notable articles The articles by Gil Kalai with a proof of a subexponential upper bound on the diameter of a polyhedron and by Samuel Ferguson on the Kepler conjecture, both published in Discrete & Computational geometry, earned their author the Fulkerson Prize The Fulkerson Prize for outstanding papers in the area of discrete mathematics is sponsored jointly by the Mathematical Optimization Society (MOS) and the American Mathematical Society (AMS). Up to three awards of $1,500 each are presented at e .... References External link ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]