Blichfeldt's Theorem
   HOME
*



picture info

Blichfeldt's Theorem
Blichfeldt's theorem is a mathematical theorem in the geometry of numbers, stating that whenever a bounded set in the Euclidean plane has area A, it can be translated so that it includes at least \lceil A\rceil points of the integer lattice. Equivalently, every bounded set of area A contains a set of \lceil A\rceil points whose coordinates all differ by integers. This theorem can be generalized to other lattices and to higher dimensions, and can be interpreted as a continuous version of the pigeonhole principle. It is named after Danish-American mathematician Hans Frederick Blichfeldt, who published it in 1914. Some sources call it Blichfeldt's principle or Blichfeldt's lemma. Statement and proof The theorem can be stated most simply for points in the Euclidean plane, and for the integer lattice in the plane. For this version of the theorem, let S be any measurable set, let A denote its area, and round this number up to the next integer value, n=\lceil A\rceil . Then Blichfeldt's ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hermann Minkowski
Hermann Minkowski (; ; 22 June 1864 – 12 January 1909) was a German mathematician and professor at Königsberg, Zürich and Göttingen. He created and developed the geometry of numbers and used geometrical methods to solve problems in number theory, mathematical physics, and the theory of relativity. Minkowski is perhaps best known for his foundational work describing space and time as a four-dimensional space, now known as "Minkowski spacetime", which facilitated geometric interpretations of Albert Einstein's special theory of relativity (1905). Personal life and family Hermann Minkowski was born in the town of Aleksota, the Suwałki Governorate, the Kingdom of Poland, part of the Russian Empire, to Lewin Boruch Minkowski, a merchant who subsidized the building of the choral synagogue in Kovno, and Rachel Taubmann, both of Jewish descent. Hermann was a younger brother of the medical researcher Oskar (born 1858). In different sources Minkowski's nationality is variously giv ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Transactions Of The American Mathematical Society
The ''Transactions of the American Mathematical Society'' is a monthly peer-reviewed scientific journal of mathematics published by the American Mathematical Society. It was established in 1900. As a requirement, all articles must be more than 15 printed pages. See also * ''Bulletin of the American Mathematical Society'' * '' Journal of the American Mathematical Society'' * ''Memoirs of the American Mathematical Society'' * ''Notices of the American Mathematical Society'' * ''Proceedings of the American Mathematical Society'' External links * ''Transactions of the American Mathematical Society''on JSTOR JSTOR (; short for ''Journal Storage'') is a digital library founded in 1995 in New York City. Originally containing digitized back issues of academic journals, it now encompasses books and other primary sources as well as current issues of j ... American Mathematical Society academic journals Mathematics journals Publications established in 1900 {{math-journal-st ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pick's Theorem
In geometry, Pick's theorem provides a formula for the area of a simple polygon with integer vertex coordinates, in terms of the number of integer points within it and on its boundary. The result was first described by Georg Alexander Pick in 1899. It was popularized in English by Hugo Steinhaus in the 1950 edition of his book ''Mathematical Snapshots''. It has multiple proofs, and can be generalized to formulas for certain kinds of non-simple polygons. Formula Suppose that a polygon has integer coordinates for all of its vertices. Let i be the number of integer points interior to the polygon, and let b be the number of integer points on its boundary (including both vertices and points along the sides). Then the area A of this polygon is: A = i + \frac - 1. The example shown has i=7 interior points and b=8 boundary points, so its area is A=7+\tfrac-1=10 square units. Proofs Via Euler's formula One proof of this theorem involves subdividing the polygon into triangles with three ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dot Planimeter
A dot planimeter is a device used in planimetrics for estimating the area of a shape, consisting of a transparent sheet containing a square grid of dots. To estimate the area of a shape, the sheet is overlaid on the shape and the dots within the shape are counted. The estimate of area is the number of dots counted multiplied by the area of a single grid square. In some variations, dots that land on or near the boundary of the shape are counted as half of a unit. The dots may also be grouped into larger square groups by lines drawn onto the transparency, allowing groups that are entirely within the shape to be added to the count rather than requiring their dots to be counted one by one. The estimation of area by means of a dot grid has also been called the dot grid method or (particularly when the alignment of the grid with the shape is random) systematic sampling. Perhaps because of its simplicity, it has been repeatedly reinvented. Application In forestry, cartography, and geogr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Collision Resistance
In cryptography, collision resistance is a property of cryptographic hash functions: a hash function ''H'' is collision-resistant if it is hard to find two inputs that hash to the same output; that is, two inputs ''a'' and ''b'' where ''a'' ≠ ''b'' but ''H''(''a'') = ''H''(''b''). Goldwasser, S. and Bellare, M.br>"Lecture Notes on Cryptography" Summer course on cryptography, MIT, 1996-2001 The pigeonhole principle means that any hash function with more inputs than outputs will necessarily have such collisions; the harder they are to find, the more cryptographically secure the hash function is. The "birthday paradox" places an upper bound on collision resistance: if a hash function produces ''N'' bits of output, an attacker who computes only 2''N''/2 (or \scriptstyle \sqrt) hash operations on random input is likely to find two matching outputs. If there is an easier method than this brute-force attack, it is typically considered a flaw in the hash function.Pass, R"Lecture 21: Col ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Boolean Circuit
In computational complexity theory and circuit complexity, a Boolean circuit is a mathematical model for combinational digital logic circuits. A formal language can be decided by a family of Boolean circuits, one circuit for each possible input length. Boolean circuits are defined in terms of the logic gates they contain. For example, a circuit might contain binary AND and OR gates and unary NOT gates, or be entirely described by binary NAND gates. Each gate corresponds to some Boolean function that takes a fixed number of bits as input and outputs a single bit. Boolean circuits provide a model for many digital components used in computer engineering, including multiplexers, adders, and arithmetic logic units, but they exclude sequential logic. They are an abstraction that omits many aspects relevant to designing real digital logic circuits, such as metastability, fanout, glitches, power consumption, and propagation delay variability. Formal definition In giving a forma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




PPP (complexity)
In computational complexity theory, the complexity class PPP (polynomial pigeonhole principle) is a subclass of TFNP. It is the class of search problems that can be shown to be total by an application of the pigeonhole principle. Christos Papadimitriou introduced it in the same paper that introduced PPAD and PPA. PPP contains both PPAD and PWPP (polynomial weak pigeonhole principle) as subclasses. These complexity classes are of particular interest in cryptography because they are strongly related to cryptographic primitives such as one-way permutations and collision-resistant hash functions. Definition PPP is the set of all function computation problems that admit a polynomial-time reduction to the ''PIGEON'' problem, defined as follows: :Given a Boolean circuit C having the same number n of input bits as output bits, find either an input x that is mapped to the output C(x) = 0^n, or two distinct inputs x \ne y that are mapped to the same output C(x) = C(y). A problem is PPP-co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Measurable Function
In mathematics and in particular measure theory, a measurable function is a function between the underlying sets of two measurable spaces that preserves the structure of the spaces: the preimage of any measurable set is measurable. This is in direct analogy to the definition that a continuous function between topological spaces preserves the topological structure: the preimage of any open set is open. In real analysis, measurable functions are used in the definition of the Lebesgue integral. In probability theory, a measurable function on a probability space is known as a random variable. Formal definition Let (X,\Sigma) and (Y,\Tau) be measurable spaces, meaning that X and Y are sets equipped with respective \sigma-algebras \Sigma and \Tau. A function f:X\to Y is said to be measurable if for every E\in \Tau the pre-image of E under f is in \Sigma; that is, for all E \in \Tau f^(E) := \ \in \Sigma. That is, \sigma (f)\subseteq\Sigma, where \sigma (f) is the σ-algebra gen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Archimedean Tiling
Euclidean plane tilings by convex regular polygons have been widely used since antiquity. The first systematic mathematical treatment was that of Kepler in his ''Harmonices Mundi'' (Latin: ''The Harmony of the World'', 1619). Notation of Euclidean tilings Euclidean tilings are usually named after Cundy & Rollett’s notation. This notation represents (i) the number of vertices, (ii) the number of polygons around each vertex (arranged clockwise) and (iii) the number of sides to each of those polygons. For example: 36; 36; 34.6, tells us there are 3 vertices with 2 different vertex types, so this tiling would be classed as a ‘3-uniform (2-vertex types)’ tiling. Broken down, 36; 36 (both of different transitivity class), or (36)2, tells us that there are 2 vertices (denoted by the superscript 2), each with 6 equilateral 3-sided polygons (triangles). With a final vertex 34.6, 4 more contiguous equilateral triangles and a single regular hexagon. However, this notation has two ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fuchsian Group
In mathematics, a Fuchsian group is a discrete subgroup of PSL(2,R). The group PSL(2,R) can be regarded equivalently as a group of isometries of the hyperbolic plane, or conformal transformations of the unit disc, or conformal transformations of the upper half plane, so a Fuchsian group can be regarded as a group acting on any of these spaces. There are some variations of the definition: sometimes the Fuchsian group is assumed to be finitely generated, sometimes it is allowed to be a subgroup of PGL(2,R) (so that it contains orientation-reversing elements), and sometimes it is allowed to be a Kleinian group (a discrete subgroup of PSL(2,C)) which is conjugate to a subgroup of PSL(2,R). Fuchsian groups are used to create Fuchsian models of Riemann surfaces. In this case, the group may be called the Fuchsian group of the surface. In some sense, Fuchsian groups do for non-Euclidean geometry what crystallographic groups do for Euclidean geometry. Some Escher graphics are based on t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Diophantine Approximation
In number theory, the study of Diophantine approximation deals with the approximation of real numbers by rational numbers. It is named after Diophantus of Alexandria. The first problem was to know how well a real number can be approximated by rational numbers. For this problem, a rational number ''a''/''b'' is a "good" approximation of a real number ''α'' if the absolute value of the difference between ''a''/''b'' and ''α'' may not decrease if ''a''/''b'' is replaced by another rational number with a smaller denominator. This problem was solved during the 18th century by means of continued fractions. Knowing the "best" approximations of a given number, the main problem of the field is to find sharp upper and lower bounds of the above difference, expressed as a function of the denominator. It appears that these bounds depend on the nature of the real numbers to be approximated: the lower bound for the approximation of a rational number by another rational number is larger than ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]