Bis(2,4,5-trichlorophenyl-6-carbopentoxyphenyl)oxalate
   HOME
*





Bis(2,4,5-trichlorophenyl-6-carbopentoxyphenyl)oxalate
Bis ,4,5-trichloro-6-(pentyloxycarbonyl)phenylxalate (also known as bis(2,4,5-trichloro-6-carbopentoxyphenyl) oxalate or CPPO) is a solid ester whose oxidation products are responsible for the chemiluminescence in a glowstick. It can be synthesized by reacting 2-carbopentoxy-3,5,6-trichlorophenol with oxalyl chloride. When mixed with hydrogen peroxide in an organic solvent (diethyl phthalate, ethyl acetate, etc...) in the presence of a fluorescent dye CPPO causes the emission of light, as per the following scheme involving 1,2-dioxetanedione (note that many side-groups of the aromatic rings are not shown.): : The reaction rate is pH dependent, and slightly alkaline conditions achieved by adding a weak base, e.g. sodium salicylate, will produce brighter light. Developed by American Cyanamid in the 1960s, the formulation containing CPPO, a fluorescer, and a glass capsule containing hydrogen peroxide and a base catalyst, all in dialkyl phthalate Phthalates (, ), or phthalat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Glowstick
A glow stick, also known as a light stick, chem light, light wand, light rod, and rave light, is a self-contained, short-term light-source. It consists of a translucent plastic tube containing isolated substances that, when combined, make light through chemiluminescence. The light cannot be turned off and can be used only once. The used tube is then thrown away. Glow sticks are often used for recreation, such as for events, camping, outdoor exploration, and concerts. Glow sticks are also used for light in military and Emergency service, emergency services applications. Industrial uses include marine, transportation, and mining. History Bis(2,4,5-trichlorophenyl-6-carbopentoxyphenyl)oxalate, trademarked "Cyalume", was invented in 1971 by Michael M. Rauhut, of American Cyanamid, based on work by Edwin A. Chandross of Bell Labs. Other early work on chemiluminescence was carried out at the same time, by researchers under Herbert Richter at China Lake Naval Weapons Center. Severa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ester
In chemistry, an ester is a compound derived from an oxoacid (organic or inorganic) in which at least one hydroxyl group () is replaced by an alkoxy group (), as in the substitution reaction of a carboxylic acid and an alcohol. Glycerides are fatty acid esters of glycerol; they are important in biology, being one of the main classes of lipids and comprising the bulk of animal fats and vegetable oils. Esters typically have a pleasant smell; those of low molecular weight are commonly used as fragrances and are found in essential oils and pheromones. They perform as high-grade solvents for a broad array of plastics, plasticizers, resins, and lacquers, and are one of the largest classes of synthetic lubricants on the commercial market. Polyesters are important plastics, with monomers linked by ester moieties. Phosphoesters form the backbone of DNA molecules. Nitrate esters, such as nitroglycerin, are known for their explosive properties. '' Nomenclature Etymology Th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Tetracene
Tetracene, also called naphthacene, is a polycyclic aromatic hydrocarbon. It has the appearance of a pale orange powder. Tetracene is the four-ringed member of the series of acenes. Tetracene is a molecular organic semiconductor, used in organic field-effect transistors (OFETs) and organic light-emitting diodes (OLEDs). In May 2007, researchers from two Japanese universities, Tohoku University in Sendai and Osaka University, reported an ambipolar light-emitting transistor made of a single tetracene crystal. Ambipolar means that the electric charge is transported by both positively charged holes and negatively charged electrons. Tetracene can be also used as a gain medium in dye lasers as a sensitiser in chemoluminescence. Jan Hendrik Schön during his time at Bell Labs (1997–2002) claimed to have developed an electrically pumped laser based on tetracene. However, his results could not be reproduced, and this is considered to be a scientific fraud. Napthacene is the main back ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Oxalate Esters
Oxalate (IUPAC: ethanedioate) is an anion with the formula C2O42−. This dianion is colorless. It occurs naturally, including in some foods. It forms a variety of salts, for example sodium oxalate (Na2C2O4), and several esters such as dimethyl oxalate (C2O4(CH3)2). It is a conjugate base of oxalic acid. At neutral pH in aqueous solution, oxalic acid converts completely to oxalate. Relationship to oxalic acid The dissociation of protons from oxalic acid proceeds in a stepwise manner; as for other polyprotic acids, loss of a single proton results in the monovalent hydrogenoxalate anion . A salt with this anion is sometimes called an acid oxalate, monobasic oxalate, or hydrogen oxalate. The equilibrium constant ( ''K''a) for loss of the first proton is (p''K''a = 1.27). The loss of the second proton, which yields the oxalate ion, has an equilibrium constant of (p''K''a = 4.28). These values imply, in solutions with neutral pH, no oxalic acid and only trace am ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rhodamine B
Rhodamine B is a chemical compound and a dye. It is often used as a tracer dye within water to determine the rate and direction of flow and transport. Rhodamine dyes fluoresce and can thus be detected easily and inexpensively with fluorometers. Rhodamine B is used in biology as a staining fluorescent dye, sometimes in combination with auramine O, as the auramine-rhodamine stain to demonstrate acid-fast organisms, notably ''Mycobacterium''. Rhodamine dyes are also used extensively in biotechnology applications such as fluorescence microscopy, flow cytometry, fluorescence correlation spectroscopy and ELISA. It is also used in rose milk, a popular Indian beverage. Other uses Rhodamine B is often mixed with herbicides to show where they have been used. It is also being tested for use as a biomarker in oral rabies vaccines for wildlife, such as raccoons, to identify animals that have eaten a vaccine bait. The rhodamine is incorporated into the animal's whiskers and teeth. Rhodam ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rhodamine 101
Rhodamine is a family of related dyes, a subset of the triarylmethane dyes. They are derivatives of xanthene. Important members of the rhodamine family are Rhodamine 6G, Rhodamine 123, and Rhodamine B. They are mainly used to dye paper and inks, but they lack the lightfastness for fabric dyeing. Use Aside from their major applications, they are often used as a tracer dye, e.g. to determine the rate and direction of flow and transport of water. Rhodamine dyes fluoresce and can thus be detected easily and inexpensively with instruments called fluorometers. Rhodamine dyes are used extensively in biotechnology applications such as fluorescence microscopy, flow cytometry, fluorescence correlation spectroscopy and ELISA. Rhodamine 123 is used in biochemistry to inhibit mitochondrion function. Rhodamine 123 appears to bind to the mitochondrial membranes and inhibit transport processes, especially the electron transport chain, thus slowing down cellular respiration. It is a substrate ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rhodamine 6G
Rhodamine 6G is a highly fluorescent rhodamine family dye. It is often used as a tracer dye within water to determine the rate and direction of flow and transport. Rhodamine dyes fluoresce and can thus be detected easily and inexpensively with instruments called fluorometers. Rhodamine dyes are used extensively in biotechnology applications such as fluorescence microscopy, flow cytometry, fluorescence correlation spectroscopy and ELISA. Forms Rhodamine 6G usually comes in three different forms. Rhodamine 6G chloride is a bronze/red powder with the chemical formula C28H31ClN2O3. Although highly soluble, this formulation is very corrosive to all metals except stainless steel. Other formulations are less soluble, but also less corrosive. Rhodamine 6G perchlorate (C28H31ClN2O7) comes in the form of red crystals, while rhodamine 6G tetrafluoroborate (C28H31BF4N2O3) appears as maroon crystals. Solubility Butanol (40 g/L), ethanol (80 g/L), methanol (400 g/L), propanol ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rubrene
Rubrene (5,6,11,12-tetraphenyltetracene) is a red colored polycyclic aromatic hydrocarbon. Rubrene is used as a Photosensitizer, sensitiser in chemoluminescence and as a yellow light source in lightsticks. Electronic properties As an organic semiconductor, the major application of rubrene is in Organic LED, organic light-emitting diodes (OLEDs) and organic field-effect transistors, which are the core elements of flexible displays. Single-crystal transistors can be prepared using crystalline rubrene, which is grown in a modified zone furnace on a temperature gradient. This technique, known as physical vapor transport, was introduced in 1998. Rubrene holds the distinction of being the organic semiconductor with the highest carrier mobility, reaching 40 cm2/(V·s) for Electron hole, holes. This value was measured in OFETs prepared by peeling a thin layer of single-crystalline rubrene and transferring to a Si/SiO2 substrate. Crystal structure Several Polymorphism (materials scie ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




5,12-Bis(phenylethynyl)naphthacene
5,12-Bis(phenylethynyl)naphthacene is a fluorescent dye used in lightstick A glow stick, also known as a light stick, chem light, light wand, light rod, and rave light, is a self-contained, short-term light-source. It consists of a translucent plastic tube containing isolated substances that, when combined, make light ...s. It yields orange light. See also * 9,10-bis(phenylethynyl)anthracene References Fluorescent dyes Polycyclic aromatic hydrocarbons Organic semiconductors Alkyne derivatives {{Aromatic-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


1-Chloro-9,10-bis(phenylethynyl)anthracene
1-Chloro-9,10-bis(phenylethynyl)anthracene is a fluorescent dye used in lightsticks. It emits yellow-green light, used in 30-minute high-intensity Cyalume Diphenyl oxalate (trademark name Cyalume) is a solid whose oxidation products are responsible for the chemiluminescence in a glowstick. This chemical is the double ester of phenol with oxalic acid. Upon reaction with hydrogen peroxide, 1,2-dioxet ... sticks. See also * 9,10-Bis(phenylethynyl)anthracene * 2-Chloro-9,10-bis(phenylethynyl)anthracene References Fluorescent dyes Organic semiconductors Anthracenes Alkyne derivatives Chloroarenes {{aromatic-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


9,10-Diphenylanthracene
9,10-Diphenylanthracene is a polycyclic aromatic hydrocarbon. It has the appearance of a slightly yellow powder. 9,10-Diphenylanthracene is used as a sensitiser in chemiluminescence. In lightsticks it is used to produce blue light. It is a molecular organic semiconductor, used in blue OLEDs An organic light-emitting diode (OLED or organic LED), also known as organic electroluminescent (organic EL) diode, is a light-emitting diode (LED) in which the emission (electromagnetic radiation), emissive electroluminescence, electroluminesc ... and OLED-based displays. See also * 2-Chloro-9,10-diphenylanthracene, a chlorinated derivative References External links Polycyclic aromatic hydrocarbons Australian National Pollutant Inventory Organic semiconductors Anthracenes {{hydrocarbon-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]