Birkhoff's Theorem (equational Logic)
   HOME
*





Birkhoff's Theorem (equational Logic)
In logic, Birkhoff's theorem in equational logic states that an equality t = u is a semantic consequence of a set of equalities In mathematics, equality is a relationship between two quantities or, more generally two mathematical expressions, asserting that the quantities have the same value, or that the expressions represent the same mathematical object. The equality b ... E, if and only if t = u can be proven from the set of equalities. It is named after Garrett Birkhoff. References Logic Formal sciences {{Logic-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Logic
Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the science of deductively valid inferences or of logical truths. It is a formal science investigating how conclusions follow from premises in a topic-neutral way. When used as a countable noun, the term "a logic" refers to a logical formal system that articulates a proof system. Formal logic contrasts with informal logic, which is associated with informal fallacies, critical thinking, and argumentation theory. While there is no general agreement on how formal and informal logic are to be distinguished, one prominent approach associates their difference with whether the studied arguments are expressed in formal or informal languages. Logic plays a central role in multiple fields, such as philosophy, mathematics, computer science, and linguistics. Logic studies arguments, which consist of a set of premises together with a conclusion. Premises and conclusions are usually un ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Equational Logic
First-order equational logic consists of quantifier-free terms of ordinary first-order logic, with equality as the only predicate symbol. The model theory of this logic was developed into universal algebra by Birkhoff, Grätzer, and Cohn. It was later made into a branch of category theory by Lawvere ("algebraic theories").equational logic. (n.d.). The Free On-line Dictionary of Computing. Retrieved October 24, 2011, from Dictionary.com website: http://dictionary.reference.com/browse/equational+logic The terms of equational logic are built up from variables and constants using function symbols (or operations). Syllogism Here are the four inference rules of logic. P := E/math> denotes textual substitution of expression E for variable x in expression P. Next, b = c denotes equality, for b and c of the same type, while b \equiv c, or equivalence, is defined only for b and c of type boolean. For b and c of type boolean, b = c and b \equiv c have the same meaning. Gries, D. (2010 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Semantic Consequence
Logical consequence (also entailment) is a fundamental concept in logic, which describes the relationship between statements that hold true when one statement logically ''follows from'' one or more statements. A valid logical argument is one in which the conclusion is entailed by the premises, because the conclusion is the consequence of the premises. The philosophical analysis of logical consequence involves the questions: In what sense does a conclusion follow from its premises? and What does it mean for a conclusion to be a consequence of premises?Beall, JC and Restall, Greg, Logical Consequence' The Stanford Encyclopedia of Philosophy (Fall 2009 Edition), Edward N. Zalta (ed.). All of philosophical logic is meant to provide accounts of the nature of logical consequence and the nature of logical truth. Logical consequence is necessary and formal, by way of examples that explain with formal proof and models of interpretation. A sentence is said to be a logical consequ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Equality (mathematics)
In mathematics, equality is a relationship between two quantities or, more generally two mathematical expressions, asserting that the quantities have the same value, or that the expressions represent the same mathematical object. The equality between and is written , and pronounced equals . The symbol "" is called an "equals sign". Two objects that are not equal are said to be distinct. For example: * x=y means that and denote the same object. * The identity (x+1)^2=x^2+2x+1 means that if is any number, then the two expressions have the same value. This may also be interpreted as saying that the two sides of the equals sign represent the same function. * \ = \ if and only if P(x) \Leftrightarrow Q(x). This assertion, which uses set-builder notation, means that if the elements satisfying the property P(x) are the same as the elements satisfying Q(x), then the two uses of the set-builder notation define the same set. This property is often expressed as "two sets that have th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Garrett Birkhoff
Garrett Birkhoff (January 19, 1911 – November 22, 1996) was an American mathematician. He is best known for his work in lattice theory. The mathematician George Birkhoff (1884–1944) was his father. Life The son of the mathematician George David Birkhoff, Garrett was born in Princeton, New Jersey. He began the Harvard University BA course in 1928 after less than seven years of prior formal education. Upon completing his Harvard BA in 1932, he went to Cambridge University to study mathematical physics but switched to studying abstract algebra under Philip Hall. While visiting the University of Munich, he met Carathéodory who pointed him towards two important texts, Van der Waerden on abstract algebra and Speiser on group theory. Birkhoff held no Ph.D., a qualification British higher education did not emphasize at that time, and did not even bother obtaining an M.A. Nevertheless, after being a member of Harvard's Society of Fellows, 1933–36, he spent the rest of h ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Logic
Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the science of deductively valid inferences or of logical truths. It is a formal science investigating how conclusions follow from premises in a topic-neutral way. When used as a countable noun, the term "a logic" refers to a logical formal system that articulates a proof system. Formal logic contrasts with informal logic, which is associated with informal fallacies, critical thinking, and argumentation theory. While there is no general agreement on how formal and informal logic are to be distinguished, one prominent approach associates their difference with whether the studied arguments are expressed in formal or informal languages. Logic plays a central role in multiple fields, such as philosophy, mathematics, computer science, and linguistics. Logic studies arguments, which consist of a set of premises together with a conclusion. Premises and conclusions are usually un ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]