Biharmonic Bézier Surface
   HOME
*





Biharmonic Bézier Surface
A biharmonic Bézier surface is a smooth polynomial surface which conforms to the biharmonic equation and has the same formulations as a Bézier surface. This formulation for Bézier surfaces was developed by Juan Monterde and Hassan Ugail. In order to generate a biharmonic Bézier surface four boundary conditions defined by Bézier control points are usually required. It has been shown that given four boundary conditions a unique solution to the chosen general fourth order elliptic partial differential equation can be formulated. Biharmonic Bézier surfaces are related to minimal surface In mathematics, a minimal surface is a surface that locally minimizes its area. This is equivalent to having zero mean curvature (see definitions below). The term "minimal surface" is used because these surfaces originally arose as surfaces that ...s. i.e. surfaces that minimise the area among all the surfaces with prescribed boundary data. External links Related publications 1. J. Monterd ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polynomial
In mathematics, a polynomial is an expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An example of a polynomial of a single indeterminate is . An example with three indeterminates is . Polynomials appear in many areas of mathematics and science. For example, they are used to form polynomial equations, which encode a wide range of problems, from elementary word problems to complicated scientific problems; they are used to define polynomial functions, which appear in settings ranging from basic chemistry and physics to economics and social science; they are used in calculus and numerical analysis to approximate other functions. In advanced mathematics, polynomials are used to construct polynomial rings and algebraic varieties, which are central concepts in algebra and algebraic geometry. Etymology The word ''polynomial'' join ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Biharmonic Equation
In mathematics, the biharmonic equation is a fourth-order partial differential equation which arises in areas of continuum mechanics, including linear elasticity theory and the solution of Stokes flows. Specifically, it is used in the modeling of thin structures that react elastically to external forces. Notation It is written as :\nabla^4\varphi=0 or :\nabla^2\nabla^2\varphi=0 or :\Delta^2\varphi=0 where \nabla^4, which is the fourth power of the del operator and the square of the Laplacian operator \nabla^2 (or \Delta), is known as the biharmonic operator or the bilaplacian operator. In Cartesian coordinates, it can be written in n dimensions as: : \nabla^4\varphi=\sum_^n\sum_^n\partial_i\partial_i\partial_j\partial_j \varphi =\left(\sum_^n\partial_i\partial_i\right)\left(\sum_^n \partial_j\partial_j\right) \varphi. Because the formula here contains a summation of indices, many mathematicians prefer the notation \Delta^2 over \nabla^4 because the former makes clear ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bézier Surface
Bézier surfaces are a species of mathematical spline used in computer graphics, computer-aided design, and finite element modeling. As with Bézier curves, a Bézier surface is defined by a set of control points. Similar to interpolation in many respects, a key difference is that the surface does not, in general, pass through the central control points; rather, it is "stretched" toward them as though each were an attractive force. They are visually intuitive, and for many applications, mathematically convenient. History Bézier surfaces were first described in 1962 by the French engineer Pierre Bézier who used them to design automobile bodies. Bézier surfaces can be of any degree, but bicubic Bézier surfaces generally provide enough degrees of freedom for most applications. Equation A given Bézier surface of degree (''n'', ''m'') is defined by a set of (''n'' + 1)(''m'' + 1) control points k''i'',''j'' where ''i'' = 0, ..., ''n'' and ''j'' = ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hassan Ugail
Professor Hassan Ugail is a mathematician and a computer scientist. He is currently working as a professor of visual computing at the Faculty of Engineering and Informatics at the University of Bradford. Ugail is known to be the first Maldivian to obtain a PhD in mathematics. He is also the first and, to date, the only Maldivian to receive a professorship in the field of Science. Ugail is known for his contributions on computer-based human face analysis including, face recognition, face ageing, emotion analysis and lie detection. For example, in 2018, he has used his face recognition tools to help unmask the two suspected Russian spies at the heart of the Salisbury Novichok poisoning case. Additionally, in 2020, Ugail collaborated with the BBC News investigators to uncover an alleged Nazi war criminal, who settled in the UK, who could have worked for the British intelligence during the Cold War. Ugail's research interests are in the area of Visual Computing, particularly in th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Boundary Value Problem
In mathematics, in the field of differential equations, a boundary value problem is a differential equation together with a set of additional constraints, called the boundary conditions. A solution to a boundary value problem is a solution to the differential equation which also satisfies the boundary conditions. Boundary value problems arise in several branches of physics as any physical differential equation will have them. Problems involving the wave equation, such as the determination of normal modes, are often stated as boundary value problems. A large class of important boundary value problems are the Sturm–Liouville problems. The analysis of these problems involves the eigenfunctions of a differential operator. To be useful in applications, a boundary value problem should be well posed. This means that given the input to the problem there exists a unique solution, which depends continuously on the input. Much theoretical work in the field of partial differential ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Control Point (mathematics)
In computer-aided geometric design a control point is a member of a set of Point (geometry), points used to determine the shape of a spline curve or, more generally, a computer representation of surfaces, surface or higher-dimensional object. For Bézier curves, it has become customary to refer to the -vectors in a parametric representation \sum_i \mathbf p_i \phi_i of a curve or surface in -space as control points, while the Scalar field, scalar-valued functions , defined over the relevant parameter domain, are the corresponding weight function, ''weight'' or ''blending functions''. Some would reasonably insist, in order to give intuitive geometric meaning to the word "control", that the blending functions form a partition of unity, i.e., that the are nonnegative and sum to one. This property implies that the curve lies within the convex hull of its control points.. This is the case for Bézier's representation of a polynomial curve as well as for the B-spline representation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Elliptic Partial Differential Equation
Second-order linear partial differential equations (PDEs) are classified as either elliptic, hyperbolic, or parabolic. Any second-order linear PDE in two variables can be written in the form :Au_ + 2Bu_ + Cu_ + Du_x + Eu_y + Fu +G= 0,\, where , , , , , , and are functions of and and where u_x=\frac, u_=\frac and similarly for u_,u_y,u_. A PDE written in this form is elliptic if :B^2-AC, applying the chain rule once gives :u_=u_\xi \xi_x+u_\eta \eta_x and u_=u_\xi \xi_y+u_\eta \eta_y, a second application gives :u_=u_ _x+u_ _x+2u_\xi_x\eta_x+u_\xi_+u_\eta_, :u_=u_ _y+u_ _y+2u_\xi_y\eta_y+u_\xi_+u_\eta_, and :u_=u_ \xi_x\xi_y+u_ \eta_x\eta_y+u_(\xi_x\eta_y+\xi_y\eta_x)+u_\xi_+u_\eta_. We can replace our PDE in x and y with an equivalent equation in \xi and \eta :au_ + 2bu_ + cu_ \text= 0,\, where :a=A^2+2B\xi_x\xi_y+C^2, :b=2A\xi_x\eta_x+2B(\xi_x\eta_y+\xi_y\eta_x) +2C\xi_y\eta_y , and :c=A^2+2B\eta_x\eta_y+C^2. To transform our PDE into the desired canonical fo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Minimal Surface
In mathematics, a minimal surface is a surface that locally minimizes its area. This is equivalent to having zero mean curvature (see definitions below). The term "minimal surface" is used because these surfaces originally arose as surfaces that minimized total surface area subject to some constraint. Physical models of area-minimizing minimal surfaces can be made by dipping a wire frame into a soap solution, forming a soap film, which is a minimal surface whose boundary is the wire frame. However, the term is used for more general surfaces that may self-intersect or do not have constraints. For a given constraint there may also exist several minimal surfaces with different areas (for example, see minimal surface of revolution): the standard definitions only relate to a local optimum, not a global optimum. Definitions Minimal surfaces can be defined in several equivalent ways in R3. The fact that they are equivalent serves to demonstrate how minimal surface theory lies at the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Surfaces
A surface, as the term is most generally used, is the outermost or uppermost layer of a physical object or space. Surface or surfaces may also refer to: Mathematics *Surface (mathematics), a generalization of a plane which needs not be flat *Surface (differential geometry), a differentiable two-dimensional manifold *Surface (topology), a two-dimensional manifold * Algebraic surface, an algebraic variety of dimension two *Coordinate surfaces *Fractal surface, generated using a stochastic algorithm *Polyhedral surface * Surface area *Surface integral Arts and entertainment * Surface (band), an American R&B and pop trio ** ''Surface'' (Surface album), 1986 *Surfaces (band), American musical duo * ''Surface'' (Circle album), 1998 * "Surface" (Aero Chord song), 2014 * ''Surface'' (2005 TV series), an American science fiction show, 2005–2006 * ''Surface'' (2022 TV series), an American psychological thriller miniseries that began streaming in 2022 *'' The Surface'', an American film, 2 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]