Biconjugate Gradient Stabilized Method
   HOME
*





Biconjugate Gradient Stabilized Method
In numerical linear algebra, the biconjugate gradient stabilized method, often abbreviated as BiCGSTAB, is an iterative method developed by H. A. van der Vorst for the numerical solution of nonsymmetric linear systems. It is a variant of the biconjugate gradient method (BiCG) and has faster and smoother convergence than the original BiCG as well as other variants such as the conjugate gradient squared method (CGS). It is a Krylov subspace method. Unlike the original BiCG method, it doesn't require multiplication by the transpose of the system matrix. Algorithmic steps Unpreconditioned BiCGSTAB To solve a linear system , BiCGSTAB starts with an initial guess and proceeds as follows: # # Choose an arbitrary vector such that , e.g., . denotes the dot product of vectors # # # For ## ## ## ## ## ## ## If is accurate enough, then set and quit ## ## ## ## ## If is accurate enough, then quit ## Preconditioned BiCGSTAB Preconditioners are usually used to accelerat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Numerical Linear Algebra
Numerical linear algebra, sometimes called applied linear algebra, is the study of how matrix operations can be used to create computer algorithms which efficiently and accurately provide approximate answers to questions in continuous mathematics. It is a subfield of numerical analysis, and a type of linear algebra. Computers use floating-point arithmetic and cannot exactly represent irrational data, so when a computer algorithm is applied to a matrix of data, it can sometimes increase the difference between a number stored in the computer and the true number that it is an approximation of. Numerical linear algebra uses properties of vectors and matrices to develop computer algorithms that minimize the error introduced by the computer, and is also concerned with ensuring that the algorithm is as efficient as possible. Numerical linear algebra aims to solve problems of continuous mathematics using finite precision computers, so its applications to the natural and social sciences ar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


GMRES
In mathematics, the generalized minimal residual method (GMRES) is an iterative method for the numerical solution of an indefinite nonsymmetric system of linear equations. The method approximates the solution by the vector in a Krylov subspace with minimal residual. The Arnoldi iteration is used to find this vector. The GMRES method was developed by Yousef Saad and Martin H. Schultz in 1986. It is a generalization and improvement of the MINRES method due to Paige and Saunders in 1975. The MINRES method requires that the matrix is symmetric, but has the advantage that it only requires handling of three vectors. GMRES is a special case of the DIIS method developed by Peter Pulay in 1980. DIIS is applicable to non-linear systems. The method Denote the Euclidean norm of any vector v by \, v\, . Denote the (square) system of linear equations to be solved by : Ax = b. \, The matrix ''A'' is assumed to be invertible of size ''m''-by-''m''. Furthermore, it is assumed that b is norm ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Numerical Linear Algebra
Numerical linear algebra, sometimes called applied linear algebra, is the study of how matrix operations can be used to create computer algorithms which efficiently and accurately provide approximate answers to questions in continuous mathematics. It is a subfield of numerical analysis, and a type of linear algebra. Computers use floating-point arithmetic and cannot exactly represent irrational data, so when a computer algorithm is applied to a matrix of data, it can sometimes increase the difference between a number stored in the computer and the true number that it is an approximation of. Numerical linear algebra uses properties of vectors and matrices to develop computer algorithms that minimize the error introduced by the computer, and is also concerned with ensuring that the algorithm is as efficient as possible. Numerical linear algebra aims to solve problems of continuous mathematics using finite precision computers, so its applications to the natural and social sciences ar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Electronic Transactions On Numerical Analysis
''Electronic Transactions on Numerical Analysis'' is a peer-reviewed scientific open access journal publishing original research in applied mathematics with the focus on numerical analysis and scientific computing. It is published by the Kent State University and the Johann Radon Institute for Computational and Applied Mathematics (RICAM). Articles for this journal are published in electronic form on the journal's web site. The journal is one of the oldest scientific open access journals in mathematics. The Electronic Transactions on Numerical Analysis were founded in 1992 by Richard S. Varga, Arden Ruttan, and Lothar Reichel (all Kent State University) as a fully open access journal (no fee for reader or authors). The first issue appeared in September 1993. The current editors-in-chief are Lothar Reichel and Ronny Ramlau. Editors-in-chief * 1993–2008: Richard S. Varga * 1993–1998: Arden Ruttan * 2005–2013: Daniel Szyld * since 1993: Lothar Reichel * si ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


SIAM Journal On Scientific Computing
The ''SIAM Journal on Scientific Computing'' (''SISC''), formerly ''SIAM Journal on Scientific & Statistical Computing'', is a scientific journal focusing on the research articles on numerical methods and techniques for scientific computation. It is published by the Society for Industrial and Applied Mathematics (SIAM). Jan S. Hesthaven is the current editor-in-chief, assuming the role in January 2016. The impact factor is currently around 2. This journal papers address computational issues relevant to solution of scientific or engineering problems and include computational results demonstrating the effectiveness of proposed techniques. They are classified into three categories: 1) Methods and Algorithms for Scientific Computing. 2) Computational Methods in Science and Engineering. 3) Software and High-Performance Computing. The first type papers focus on theoretical analysis, provided that relevance to applications in science and engineering is demonstrated. They are supposed to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Conjugate Gradient Method
In mathematics, the conjugate gradient method is an algorithm for the numerical solution of particular systems of linear equations, namely those whose matrix is positive-definite. The conjugate gradient method is often implemented as an iterative algorithm, applicable to sparse systems that are too large to be handled by a direct implementation or other direct methods such as the Cholesky decomposition. Large sparse systems often arise when numerically solving partial differential equations or optimization problems. The conjugate gradient method can also be used to solve unconstrained optimization problems such as energy minimization. It is commonly attributed to Magnus Hestenes and Eduard Stiefel, who programmed it on the Z4, and extensively researched it. The biconjugate gradient method provides a generalization to non-symmetric matrices. Various nonlinear conjugate gradient methods seek minima of nonlinear optimization problems. Description of the problem addressed by co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Conjugate Gradient Squared Method
Conjugation or conjugate may refer to: Linguistics *Grammatical conjugation, the modification of a verb from its basic form *Emotive conjugation or Russell's conjugation, the use of loaded language Mathematics *Complex conjugation, the change of sign of the imaginary part of a complex number *Conjugate (square roots), the change of sign of a square root in an expression *Conjugate element (field theory), a generalization of the preceding conjugations to roots of a polynomial of any degree *Conjugate transpose, the complex conjugate of the transpose of a matrix *Harmonic conjugate in complex analysis * Conjugate (graph theory), an alternative term for a line graph, i.e. a graph representing the edge adjacencies of another graph *In group theory, various notions are called conjugation: **Inner automorphism, a type of conjugation homomorphism **Conjugation in group theory, related to matrix similarity in linear algebra **Conjugation (group theory), the image of an element under th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Biconjugate Gradient Method
In mathematics, more specifically in numerical linear algebra, the biconjugate gradient method is an algorithm to solve systems of linear equations :A x= b.\, Unlike the conjugate gradient method, this algorithm does not require the matrix A to be self-adjoint, but instead one needs to perform multiplications by the conjugate transpose . The algorithm # Choose initial guess x_0\,, two other vectors x_0^* and b^*\, and a preconditioner M\, # r_0 \leftarrow b-A\, x_0\, # r_0^* \leftarrow b^*-x_0^*\, A # p_0 \leftarrow M^ r_0\, # p_0^* \leftarrow r_0^*M^\, # for k=0, 1, \ldots do ## \alpha_k \leftarrow \, ## x_ \leftarrow x_k + \alpha_k \cdot p_k\, ## x_^* \leftarrow x_k^* + \overline\cdot p_k^*\, ## r_ \leftarrow r_k - \alpha_k \cdot A p_k\, ## r_^* \leftarrow r_k^*- \overline \cdot p_k^*\, A ## \beta_k \leftarrow \, ## p_ \leftarrow M^ r_ + \beta_k \cdot p_k\, ## p_^* \leftarrow r_^*M^ + \overline\cdot p_k^*\, In the above formulation, the computed r_k\, and r_k^* satisfy :r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Recurrence Relation
In mathematics, a recurrence relation is an equation according to which the nth term of a sequence of numbers is equal to some combination of the previous terms. Often, only k previous terms of the sequence appear in the equation, for a parameter k that is independent of n; this number k is called the ''order'' of the relation. If the values of the first k numbers in the sequence have been given, the rest of the sequence can be calculated by repeatedly applying the equation. In ''linear recurrences'', the th term is equated to a linear function of the k previous terms. A famous example is the recurrence for the Fibonacci numbers, F_n=F_+F_ where the order k is two and the linear function merely adds the two previous terms. This example is a linear recurrence with constant coefficients, because the coefficients of the linear function (1 and 1) are constants that do not depend on n. For these recurrences, one can express the general term of the sequence as a closed-form expression o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Iterative Method
In computational mathematics, an iterative method is a Algorithm, mathematical procedure that uses an initial value to generate a sequence of improving approximate solutions for a class of problems, in which the ''n''-th approximation is derived from the previous ones. A specific implementation of an iterative method, including the Algorithm#Termination, termination criteria, is an algorithm of the iterative method. An iterative method is called convergent if the corresponding sequence converges for given initial approximations. A mathematically rigorous convergence analysis of an iterative method is usually performed; however, heuristic-based iterative methods are also common. In contrast, direct methods attempt to solve the problem by a finite sequence of operations. In the absence of rounding errors, direct methods would deliver an exact solution (for example, solving a linear system of equations A\mathbf=\mathbf by Gaussian elimination). Iterative methods are often the only cho ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Preconditioner
In mathematics, preconditioning is the application of a transformation, called the preconditioner, that conditions a given problem into a form that is more suitable for numerical solving methods. Preconditioning is typically related to reducing a condition number of the problem. The preconditioned problem is then usually solved by an iterative method. Preconditioning for linear systems In linear algebra and numerical analysis, a preconditioner P of a matrix A is a matrix such that P^A has a smaller condition number than A. It is also common to call T=P^ the preconditioner, rather than P, since P itself is rarely explicitly available. In modern preconditioning, the application of T=P^, i.e., multiplication of a column vector, or a block of column vectors, by T=P^, is commonly performed in a matrix-free fashion, i.e., where neither P, nor T=P^ (and often not even A) are explicitly available in a matrix form. Preconditioners are useful in iterative methods to solve a line ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Krylov Subspace
In linear algebra, the order-''r'' Krylov subspace generated by an ''n''-by-''n'' matrix ''A'' and a vector ''b'' of dimension ''n'' is the linear subspace spanned by the images of ''b'' under the first ''r'' powers of ''A'' (starting from A^0=I), that is, :\mathcal_r(A,b) = \operatorname \, \. Background The concept is named after Russian applied mathematician and naval engineer Alexei Krylov, who published a paper about it in 1931. Properties * \mathcal_r(A,b),A\mathcal_r(A,b)\subset \mathcal_(A,b). * Vectors \ are linearly independent until r, where p(A) is the minimal polynomial of A. Furthermore, there exists a b such that r_0 = \deg (A)/math>. * \mathcal_r(A,b) is a cyclic submodule generated by b of the torsion k /math>-module (k^n)^A, where k^n is the linear space on k. * k^n can be decomposed as the direct sum of Krylov subspaces. Use Krylov subspaces are used in algorithms for finding approximate solutions to high-dimensional linear algebra problems. Many linear dyn ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]