Bertrand's Box Paradox
   HOME



picture info

Bertrand's Box Paradox
Bertrand's box paradox is a Paradox#Quine's_classification, veridical paradox in elementary probability theory. It was first posed by Joseph Bertrand in his 1889 work Calcul des Probabilités'. There are three boxes: # a box containing two gold coins, # a box containing two silver coins, # a box containing one gold coin and one silver coin. A coin withdrawn at random from one of the three boxes happens to be a gold. What is the probability the other coin from the same box will also be a gold coin? A veridical paradox is a paradox whose correct solution seems to be counterintuitive. It may seem intuitive that the probability that the remaining coin is gold should be , but the probability is actually . Bertrand showed that if were correct, it would result in a contradiction, so cannot be correct. This simple but counterintuitive puzzle is used as a standard example in teaching probability theory. The solution illustrates some basic principles, including the Kolmogorov axioms. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Three Mystery Boxes
3 (three) is a number, numeral and digit. It is the natural number following 2 and preceding 4, and is the smallest odd prime number and the only prime preceding a square number. It has religious and cultural significance in many societies. Evolution of the Arabic digit The use of three lines to denote the number 3 occurred in many writing systems, including some (like Roman and Chinese numerals) that are still in use. That was also the original representation of 3 in the Brahmic (Indian) numerical notation, its earliest forms aligned vertically. However, during the Gupta Empire the sign was modified by the addition of a curve on each line. The Nāgarī script rotated the lines clockwise, so they appeared horizontally, and ended each line with a short downward stroke on the right. In cursive script, the three strokes were eventually connected to form a glyph resembling a with an additional stroke at the bottom: ३. The Indian digits spread to the Caliphate in the 9th c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Paradox
A paradox is a logically self-contradictory statement or a statement that runs contrary to one's expectation. It is a statement that, despite apparently valid reasoning from true or apparently true premises, leads to a seemingly self-contradictory or a logically unacceptable conclusion. A paradox usually involves contradictory-yet-interrelated elements that exist simultaneously and persist over time. They result in "persistent contradiction between interdependent elements" leading to a lasting "unity of opposites". In logic, many paradoxes exist that are known to be invalid arguments, yet are nevertheless valuable in promoting critical thinking, while other paradoxes have revealed errors in definitions that were assumed to be rigorous, and have caused axioms of mathematics and logic to be re-examined. One example is Russell's paradox, which questions whether a "list of all lists that do not contain themselves" would include itself and showed that attempts to found set theory on ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Probability Theory
Probability theory or probability calculus is the branch of mathematics concerned with probability. Although there are several different probability interpretations, probability theory treats the concept in a rigorous mathematical manner by expressing it through a set of axioms of probability, axioms. Typically these axioms formalise probability in terms of a probability space, which assigns a measure (mathematics), measure taking values between 0 and 1, termed the probability measure, to a set of outcomes called the sample space. Any specified subset of the sample space is called an event (probability theory), event. Central subjects in probability theory include discrete and continuous random variables, probability distributions, and stochastic processes (which provide mathematical abstractions of determinism, non-deterministic or uncertain processes or measured Quantity, quantities that may either be single occurrences or evolve over time in a random fashion). Although it is no ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]




Joseph Bertrand
Joseph Louis François Bertrand (; 11 March 1822 – 5 April 1900) was a French mathematician whose work emphasized number theory, differential geometry, probability theory, economics and thermodynamics. Biography Joseph Bertrand was the son of physician Alexandre Jacques François Bertrand and the brother of archaeologist Alexandre Bertrand. His father died when Joseph was only nine years old; by that time he had learned a substantial amount of mathematics and could speak Latin fluently. At eleven years old he attended the course of the École Polytechnique as an auditor. From age eleven to seventeen, he obtained two bachelor's degrees, a license and a PhD with a thesis concerning the mathematical theory of electricity, and was admitted to the 1839 entrance examination of the École Polytechnique. Bertrand was a professor at the École Polytechnique and Collège de France, and was a member of the Paris Academy of Sciences of which he was the permanent secretary for twenty-si ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Kolmogorov Axioms
The standard probability axioms are the foundations of probability theory introduced by Russian mathematician Andrey Kolmogorov in 1933. These axioms remain central and have direct contributions to mathematics, the physical sciences, and real-world probability cases. There are several other (equivalent) approaches to formalising probability. Bayesians will often motivate the Kolmogorov axioms by invoking Cox's theorem or the Dutch book arguments instead. Kolmogorov axioms The assumptions as to setting up the axioms can be summarised as follows: Let (\Omega, F, P) be a measure space such that P(E) is the probability of some event E, and P(\Omega) = 1. Then (\Omega, F, P) is a probability space, with sample space \Omega, event space F and probability measure P. First axiom The probability of an event is a non-negative real number: :P(E)\in\mathbb, P(E)\geq 0 \qquad \forall E \in F where F is the event space. It follows (when combined with the second axiom) that P(E) is alwa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]



MORE