Bernays–Schönfinkel Class
   HOME
*





Bernays–Schönfinkel Class
The Bernays–Schönfinkel class (also known as Bernays–Schönfinkel–Ramsey class) of formulas, named after Paul Bernays, Moses Schönfinkel and Frank P. Ramsey, is a fragment of first-order logic formulas where satisfiability is decidable. It is the set of sentences that, when written in prenex normal form, have an \exists^*\forall^* quantifier prefix and do not contain any function symbols. This class of logic formulas is also sometimes referred as effectively propositional (EPR) since it can be effectively translated into propositional logic formulas by a process of grounding or instantiation. The satisfiability problem for this class is NEXPTIME-complete. See also *Prenex normal form A formula of the predicate calculus is in prenex normal form (PNF) if it is written as a string of quantifiers and bound variables, called the prefix, followed by a quantifier-free part, called the matrix. Together with the normal forms in prop ... Notes References * * Predicate l ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Paul Bernays
Paul Isaac Bernays (17 October 1888 – 18 September 1977) was a Swiss mathematician who made significant contributions to mathematical logic, axiomatic set theory, and the philosophy of mathematics. He was an assistant and close collaborator of David Hilbert. Biography Bernays was born into a distinguished German-Jewish family of scholars and businessmen. His great-grandfather, Isaac ben Jacob Bernays, served as chief rabbi of Hamburg from 1821 to 1849. Bernays spent his childhood in Berlin, and attended the Köllner Gymnasium, 1895–1907. At the University of Berlin, he studied mathematics under Issai Schur, Edmund Landau, Ferdinand Georg Frobenius, and Friedrich Schottky; philosophy under Alois Riehl, Carl Stumpf and Ernst Cassirer; and physics under Max Planck. At the University of Göttingen, he studied mathematics under David Hilbert, Edmund Landau, Hermann Weyl, and Felix Klein; physics under Voigt and Max Born; and philosophy under Leonard Nelson. In 1912, the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Moses Schönfinkel
Moses Ilyich Schönfinkel (russian: Моисей Исаевич Шейнфинкель, translit=Moisei Isai'evich Sheinfinkel; 29 September 1888 – 1942) was a logician and mathematician, known for the invention of combinatory logic. Life Moses Schönfinkel was born in 1888 in Ekaterinoslav, Russian Empire (now Dnipro, Ukraine). Moses Schönfinkel was born to a Jewish family. His father was Ilya Girshevich Schönfinkel, a merchant of first guild, who was in а grocery store trade, and his mother, Maria “Masha” Gertsovna Schönfinkel (née Lurie) came from a prominent Lurie family. Moses had siblings named Deborah, Natan, Israel and Grigoriy. Schönfinkel attended the Novorossiysk University of Odessa, studying mathematics under Samuil Osipovich Shatunovskii (1859–1929), who worked in geometry and the foundations of mathematics. From 1914 to 1924, Schönfinkel was a member of David Hilbert's group at the University of Göttingen in Germany. On 7 December 1920 he deliver ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Frank P
Frank or Franks may refer to: People * Frank (given name) * Frank (surname) * Franks (surname) * Franks, a medieval Germanic people * Frank, a term in the Muslim world for all western Europeans, particularly during the Crusades - see Farang Currency * Liechtenstein franc or frank, the currency of Liechtenstein since 1920 * Swiss franc or frank, the currency of Switzerland since 1850 * Westphalian frank, currency of the Kingdom of Westphalia between 1808 and 1813 * The currencies of the German-speaking cantons of Switzerland (1803–1814): ** Appenzell frank ** Argovia frank ** Basel frank ** Berne frank ** Fribourg frank ** Glarus frank ** Graubünden frank ** Luzern frank ** Schaffhausen frank ** Schwyz frank ** Solothurn frank ** St. Gallen frank ** Thurgau frank ** Unterwalden frank ** Uri frank ** Zürich frank Places * Frank, Alberta, Canada, an urban community, formerly a village * Franks, Illinois, United States, an unincorporated community * Franks, Missouri, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

First-order Logic
First-order logic—also known as predicate logic, quantificational logic, and first-order predicate calculus—is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over non-logical objects, and allows the use of sentences that contain variables, so that rather than propositions such as "Socrates is a man", one can have expressions in the form "there exists x such that x is Socrates and x is a man", where "there exists''"'' is a quantifier, while ''x'' is a variable. This distinguishes it from propositional logic, which does not use quantifiers or relations; in this sense, propositional logic is the foundation of first-order logic. A theory about a topic is usually a first-order logic together with a specified domain of discourse (over which the quantified variables range), finitely many functions from that domain to itself, finitely many predicates defined on that domain, and a set of a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Satisfiability
In mathematical logic, a formula is ''satisfiable'' if it is true under some assignment of values to its variables. For example, the formula x+3=y is satisfiable because it is true when x=3 and y=6, while the formula x+1=x is not satisfiable over the integers. The dual concept to satisfiability is validity; a formula is ''valid'' if every assignment of values to its variables makes the formula true. For example, x+3=3+x is valid over the integers, but x+3=y is not. Formally, satisfiability is studied with respect to a fixed logic defining the syntax of allowed symbols, such as first-order logic, second-order logic or propositional logic. Rather than being syntactic, however, satisfiability is a semantic property because it relates to the ''meaning'' of the symbols, for example, the meaning of + in a formula such as x+1=x. Formally, we define an interpretation (or model) to be an assignment of values to the variables and an assignment of meaning to all other non-logical symbols, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Decidability (logic)
In logic, a true/false decision problem is decidable if there exists an effective method for deriving the correct answer. Zeroth-order logic (propositional logic) is decidable, whereas first-order and higher-order logic are not. Logical systems are decidable if membership in their set of logically valid formulas (or theorems) can be effectively determined. A theory (set of sentences closed under logical consequence) in a fixed logical system is decidable if there is an effective method for determining whether arbitrary formulas are included in the theory. Many important problems are undecidable, that is, it has been proven that no effective method for determining membership (returning a correct answer after finite, though possibly very long, time in all cases) can exist for them. Decidability of a logical system Each logical system comes with both a syntactic component, which among other things determines the notion of provability, and a semantic component, which determines t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Prenex Normal Form
A formula of the predicate calculus is in prenex normal form (PNF) if it is written as a string of quantifiers and bound variables, called the prefix, followed by a quantifier-free part, called the matrix. Together with the normal forms in propositional logic (e.g. disjunctive normal form or conjunctive normal form), it provides a canonical normal form useful in automated theorem proving. Every formula in classical logic is equivalent to a formula in prenex normal form. For example, if \phi(y), \psi(z), and \rho(x) are quantifier-free formulas with the free variables shown then :\forall x \exists y \forall z (\phi(y) \lor (\psi(z) \rightarrow \rho(x))) is in prenex normal form with matrix \phi(y) \lor (\psi(z) \rightarrow \rho(x)), while :\forall x ((\exists y \phi(y)) \lor ((\exists z \psi(z) ) \rightarrow \rho(x))) is logically equivalent but not in prenex normal form. Conversion to prenex form Every first-order formula is logically equivalent (in classical logic) to so ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Function Symbol
In formal logic and related branches of mathematics, a functional predicate, or function symbol, is a logical symbol that may be applied to an object term to produce another object term. Functional predicates are also sometimes called mappings, but that term has additional meanings in mathematics. In a model, a function symbol will be modelled by a function. Specifically, the symbol ''F'' in a formal language is a functional symbol if, given any symbol ''X'' representing an object in the language, ''F''(''X'') is again a symbol representing an object in that language. In typed logic, ''F'' is a functional symbol with ''domain'' type T and ''codomain'' type U if, given any symbol ''X'' representing an object of type T, ''F''(''X'') is a symbol representing an object of type U. One can similarly define function symbols of more than one variable, analogous to functions of more than one variable; a function symbol in zero variables is simply a constant symbol. Now consider a model ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Propositional Logic
Propositional calculus is a branch of logic. It is also called propositional logic, statement logic, sentential calculus, sentential logic, or sometimes zeroth-order logic. It deals with propositions (which can be true or false) and relations between propositions, including the construction of arguments based on them. Compound propositions are formed by connecting propositions by logical connectives. Propositions that contain no logical connectives are called atomic propositions. Unlike first-order logic, propositional logic does not deal with non-logical objects, predicates about them, or quantifiers. However, all the machinery of propositional logic is included in first-order logic and higher-order logics. In this sense, propositional logic is the foundation of first-order logic and higher-order logic. Explanation Logical connectives are found in natural languages. In English for example, some examples are "and" ( conjunction), "or" (disjunction), "not" (negation) and "if" ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


NEXPTIME
In computational complexity theory, the complexity class NEXPTIME (sometimes called NEXP) is the set of decision problems that can be solved by a non-deterministic Turing machine using time 2^. In terms of NTIME, :\mathsf = \bigcup_ \mathsf(2^) Alternatively, NEXPTIME can be defined using deterministic Turing machines as verifiers. A language ''L'' is in NEXPTIME if and only if there exist polynomials ''p'' and ''q'', and a deterministic Turing machine ''M'', such that * For all ''x'' and ''y'', the machine ''M'' runs in time 2^ on input * For all ''x'' in ''L'', there exists a string ''y'' of length 2^ such that * For all ''x'' not in ''L'' and all strings ''y'' of length 2^, We know : and also, by the time hierarchy theorem, that : If , then ( padding argument); more precisely, if and only if there exist sparse languages in NP that are not in P. Alternative characterizations NEXPTIME often arises in the context of interactive proof systems, where there are two major ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Journal Of Computer And System Sciences
The ''Journal of Computer and System Sciences'' (JCSS) is a peer-reviewed scientific journal in the field of computer science. ''JCSS'' is published by Elsevier, and it was started in 1967. Many influential scientific articles have been published in ''JCSS''; these include five papers that have won the Gödel Prize.1993 Gödel Prize


an
2014 Gödel Prize
Its managing editor is

Prenex Normal Form
A formula of the predicate calculus is in prenex normal form (PNF) if it is written as a string of quantifiers and bound variables, called the prefix, followed by a quantifier-free part, called the matrix. Together with the normal forms in propositional logic (e.g. disjunctive normal form or conjunctive normal form), it provides a canonical normal form useful in automated theorem proving. Every formula in classical logic is equivalent to a formula in prenex normal form. For example, if \phi(y), \psi(z), and \rho(x) are quantifier-free formulas with the free variables shown then :\forall x \exists y \forall z (\phi(y) \lor (\psi(z) \rightarrow \rho(x))) is in prenex normal form with matrix \phi(y) \lor (\psi(z) \rightarrow \rho(x)), while :\forall x ((\exists y \phi(y)) \lor ((\exists z \psi(z) ) \rightarrow \rho(x))) is logically equivalent but not in prenex normal form. Conversion to prenex form Every first-order formula is logically equivalent (in classical logic) to so ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]