Bennett's Inequality
   HOME
*





Bennett's Inequality
In probability theory, Bennett's inequality (mathematics), inequality provides an upper bound on the probability that the sum of independent random variables deviates from its expected value by more than any specified amount. Bennett's inequality was proved by George Bennett of the University of New South Wales in 1962. Statement Let be independent random variables with finite variance and assume (for simplicity but without loss of generality) they all have zero expected value. Further assume almost surely for all , and define S_n = \sum_^n X_i - \operatorname(X_i) and \sigma^2 = \sum_^n \operatorname(X_i^2). Then for any , :\Pr\left( S_n > t \right) \leq \exp\left( - \frac h\left(\frac \right)\right), where and log denotes the natural logarithm. Generalizations and comparisons to other bounds For generalizations see Freedman (1975) and Fan, Grama and Liu (2012) for a Martingale (probability theory), martingale version of Bennett's inequality and its improvement, respec ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Probability Theory
Probability theory is the branch of mathematics concerned with probability. Although there are several different probability interpretations, probability theory treats the concept in a rigorous mathematical manner by expressing it through a set of axioms. Typically these axioms formalise probability in terms of a probability space, which assigns a measure taking values between 0 and 1, termed the probability measure, to a set of outcomes called the sample space. Any specified subset of the sample space is called an event. Central subjects in probability theory include discrete and continuous random variables, probability distributions, and stochastic processes (which provide mathematical abstractions of non-deterministic or uncertain processes or measured quantities that may either be single occurrences or evolve over time in a random fashion). Although it is not possible to perfectly predict random events, much can be said about their behavior. Two major results in probability ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Almost Surely
In probability theory, an event is said to happen almost surely (sometimes abbreviated as a.s.) if it happens with probability 1 (or Lebesgue measure 1). In other words, the set of possible exceptions may be non-empty, but it has probability 0. The concept is analogous to the concept of "almost everywhere" in measure theory. In probability experiments on a finite sample space, there is no difference between ''almost surely'' and ''surely'' (since having a probability of 1 often entails including all the sample points). However, this distinction becomes important when the sample space is an infinite set, because an infinite set can have non-empty subsets of probability 0. Some examples of the use of this concept include the strong and uniform versions of the law of large numbers, and the continuity of the paths of Brownian motion. The terms almost certainly (a.c.) and almost always (a.a.) are also used. Almost never describes the opposite of ''almost surely'': an event that h ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bernstein Inequalities (probability Theory)
In probability theory, Bernstein inequalities give bounds on the probability that the sum of random variables deviates from its mean. In the simplest case, let ''X''1, ..., ''X''''n'' be independent Bernoulli random variables taking values +1 and −1 with probability 1/2 (this distribution is also known as the Rademacher distribution), then for every positive \varepsilon, :\mathbb\left (\left, \frac\sum_^n X_i\ > \varepsilon \right ) \leq 2\exp \left (-\frac \right). Bernstein inequalities were proved and published by Sergei Bernstein in the 1920s and 1930s.J.V.Uspensky, "Introduction to Mathematical Probability", McGraw-Hill Book Company, 1937 Later, these inequalities were rediscovered several times in various forms. Thus, special cases of the Bernstein inequalities are also known as the Chernoff bound, Hoeffding's inequality and Azuma's inequality. Some of the inequalities 1. Let X_1, \ldots, X_n be independent zero-mean random variables. Suppose that , X_i, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hoeffding's Inequality
In probability theory, Hoeffding's inequality provides an upper bound on the probability that the sum of bounded independent random variables deviates from its expected value by more than a certain amount. Hoeffding's inequality was proven by Wassily Hoeffding in 1963. Hoeffding's inequality is a special case of the Azuma–Hoeffding inequality and McDiarmid's inequality. It is similar to the Chernoff bound, but tends to be less sharp, in particular when the variance of the random variables is small. It is similar to, but incomparable with, one of Bernstein's inequalities. Statement Let be independent random variables such that a_i \leq X_i \leq b_i almost surely. Consider the sum of these random variables, :S_n = X_1 + \cdots + X_n. Then Hoeffding's theorem states that, for all , :\begin \operatorname \left(S_n - \mathrm\left _n \right\geq t \right) &\leq \exp \left(-\frac \right) \\ \operatorname \left(\left , S_n - \mathrm\left _n \right\right , \geq t \right) &\leq 2\ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Martingale (probability Theory)
In probability theory, a martingale is a sequence of random variables (i.e., a stochastic process) for which, at a particular time, the conditional expectation of the next value in the sequence is equal to the present value, regardless of all prior values. History Originally, '' martingale'' referred to a class of betting strategies that was popular in 18th-century France. The simplest of these strategies was designed for a game in which the gambler wins their stake if a coin comes up heads and loses it if the coin comes up tails. The strategy had the gambler double their bet after every loss so that the first win would recover all previous losses plus win a profit equal to the original stake. As the gambler's wealth and available time jointly approach infinity, their probability of eventually flipping heads approaches 1, which makes the martingale betting strategy seem like a sure thing. However, the exponential growth of the bets eventually bankrupts its users due to f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stochastic Processes And Their Applications
''Stochastic Processes and Their Applications'' is a monthly peer-reviewed scientific journal published by Elsevier for the Bernoulli Society for Mathematical Statistics and Probability. The editor-in-chief is Sylvie Méléard. The principal focus of this journal is theory and applications of stochastic processes. It was established in 1973. Abstracting and indexing The journal is abstracted and indexed in: According to the ''Journal Citation Reports'', ''Stochastic Processes and Their Applications'' has a 2020 impact factor The impact factor (IF) or journal impact factor (JIF) of an academic journal is a scientometric index calculated by Clarivate that reflects the yearly mean number of citations of articles published in the last two years in a given journal, as i ... of 1.467. References {{Statistics journals, state=collapsed Probability journals Elsevier academic journals English-language journals Monthly journals Academic journals established in 1973 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


The Annals Of Probability
The ''Annals of Probability'' is a leading peer-reviewed probability journal published by the Institute of Mathematical Statistics, which is the main international society for researchers in the areas probability and statistics. The journal was started in 1973 as a continuation in part of the ''Annals of Mathematical Statistics'', which was split into the ''Annals of Statistics'' and this journal. In July 2021, the journal was ranked 7th in the field Probability & Statistics with Applications according to Google Scholar. It had an impact factor of 1.470 (as of 2010), according to the ''Journal Citation Reports''. The impact factor for 2018 is 2.085. Its CiteScore is 4.3, and SCImago Journal Rank is 3.184, both from 2020. Editors-in-Chief: Past and Present The following persons have been editor-in-chief of the journal: * Ronald Pyke (1972–1975) * Patrick Billingsley (1976–1978) * Richard M. Dudley (1979–1981) * Thomas M. Liggett (1985–1987) * Peter E. Ney (1988–1990) * ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Springer (publisher)
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second largest academic publisher with 65 staff in 1872.Chronology
". Springer Science+Business Media.
In 1964, Springer expanded its business internationally, o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Without Loss Of Generality
''Without loss of generality'' (often abbreviated to WOLOG, WLOG or w.l.o.g.; less commonly stated as ''without any loss of generality'' or ''with no loss of generality'') is a frequently used expression in mathematics. The term is used to indicate the assumption that follows is chosen arbitrarily, narrowing the premise to a particular case, but does not affect the validity of the proof in general. The other cases are sufficiently similar to the one presented that proving them follows by essentially the same logic. As a result, once a proof is given for the particular case, it is trivial to adapt it to prove the conclusion in all other cases. In many scenarios, the use of "without loss of generality" is made possible by the presence of symmetry. For example, if some property ''P''(''x'',''y'') of real numbers is known to be symmetric in ''x'' and ''y'', namely that ''P''(''x'',''y'') is equivalent to ''P''(''y'',''x''), then in proving that ''P''(''x'',''y'') holds for every ''x'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Inequality (mathematics)
In mathematics, an inequality is a relation which makes a non-equal comparison between two numbers or other mathematical expressions. It is used most often to compare two numbers on the number line by their size. There are several different notations used to represent different kinds of inequalities: * The notation ''a'' ''b'' means that ''a'' is greater than ''b''. In either case, ''a'' is not equal to ''b''. These relations are known as strict inequalities, meaning that ''a'' is strictly less than or strictly greater than ''b''. Equivalence is excluded. In contrast to strict inequalities, there are two types of inequality relations that are not strict: * The notation ''a'' ≤ ''b'' or ''a'' ⩽ ''b'' means that ''a'' is less than or equal to ''b'' (or, equivalently, at most ''b'', or not greater than ''b''). * The notation ''a'' ≥ ''b'' or ''a'' ⩾ ''b'' means that ''a'' is greater than or equal to ''b'' (or, equivalently, at least ''b'', or not less than ''b''). The re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Journal Of The American Statistical Association
The ''Journal of the American Statistical Association (JASA)'' is the primary journal published by the American Statistical Association, the main professional body for statisticians in the United States. It is published four times a year in March, June, September and December by Taylor & Francis, Ltd on behalf of the American Statistical Association. As a statistics journal it publishes articles primarily focused on the application of statistics, statistical theory and methods in economic, social, physical, engineering, and health sciences. The journal also includes reviews of academic books which are important to the advancement of the field. It had an impact factor of 2.063 in 2010, tenth highest in the "Statistics and Probability" category of ''Journal Citation Reports''. In a 2003 survey of statisticians, the ''Journal of the American Statistical Association'' was ranked first, among all journals, for "Applications of Statistics" and second (after ''Annals of Statistics'') f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

University Of New South Wales
The University of New South Wales (UNSW), also known as UNSW Sydney, is a public research university based in Sydney, New South Wales, Australia. It is one of the founding members of Group of Eight, a coalition of Australian research-intensive universities. Established in 1949, UNSW is a research university, ranked 44th in the world in the 2021 ''QS World University Rankings'' and 67th in the world in the 2021 ''Times Higher Education World University Rankings''. It is one of the members of Universitas 21, a global network of research universities. It has international exchange and research partnerships with over 200 universities around the world. According to the 2021 QS World University Rankings by Subject, UNSW is ranked top 20 in the world for Law, Accounting and Finance, and 1st in Australia for Mathematics, Engineering and Technology. UNSW is also one of the leading Australian universities in Medicine, where the median ATAR (Australian university entrance examination re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]