Behavior Trees
   HOME
*



picture info

Behavior Trees
Behavior trees are a formal, graphical modelling language used primarily in systems engineering, systems and software engineering. Behavior trees employ a well-defined notation to unambiguously represent the hundreds or even thousands of natural language requirements that are typically used to express the Project stakeholder, stakeholder needs for a large-scale software-integrated system.Wen, L., Dromey, R.G. 2007From Requirements Change to Design Change: A Formal Path/ref> Overview The amount of detail in the large number of natural language requirements for a large-scale system causes short-term memory overloadDromey, R.G. 2007Principles for Engineering Large-Scale Software-Intensive Systems/ref>Boston, J. 2008Raytheon Australia supports pioneering systems research and may create a barrier that prevents anyone from gaining a deep, accurate and holistic understanding of the system needs. Also, because of the use of natural language, there are likely to be many ambiguities, a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Building A System Out Of Its Requirements
A building, or edifice, is an enclosed structure with a roof and walls standing more or less permanently in one place, such as a house or factory (although there's also portable buildings). Buildings come in a variety of sizes, shapes, and functions, and have been adapted throughout history for a wide number of factors, from building materials available, to weather conditions, land prices, ground conditions, specific uses, monument, prestige, and aesthetic reasons. To better understand the term ''building'' compare the list of nonbuilding structures. Buildings serve several societal needs – primarily as shelter from weather, security, living space, privacy, to store belongings, and to comfortably live and work. A building as a shelter represents a physical division of the :Human habitats, human habitat (a place of comfort and safety) and the ''outside'' (a place that at times may be harsh and harmful). Ever since the first cave paintings, buildings have also become objects or ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Behavior Engineering
Behavior (American English) or behaviour (British English) is the range of actions and mannerisms made by individuals, organisms, systems or artificial entities in some environment. These systems can include other systems or organisms as well as the inanimate physical environment. It is the computed response of the system or organism to various stimuli or inputs, whether internal or external, conscious or subconscious, overt or covert, and voluntary or involuntary. Taking a behavior informatics perspective, a behavior consists of actor, operation, interactions, and their properties. This can be represented as a behavior vector. Models Biology Although disagreement exists as to how to precisely define behavior in a biological context, one common interpretation based on a meta-analysis of scientific literature states that "behavior is the internally coordinated responses (actions or inactions) of whole living organisms (individuals or groups) to internal and/or external stim ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Synchronization (computer Science)
In computer science, synchronization refers to one of two distinct but related concepts: synchronization of processes, and synchronization of data. ''Process synchronization'' refers to the idea that multiple processes are to join up or handshake at a certain point, in order to reach an agreement or commit to a certain sequence of action. ''Data synchronization'' refers to the idea of keeping multiple copies of a dataset in coherence with one another, or to maintain data integrity. Process synchronization primitives are commonly used to implement data synchronization. The need for synchronization The need for synchronization does not arise merely in multi-processor systems but for any kind of concurrent processes; even in single processor systems. Mentioned below are some of the main needs for synchronization: '' Forks and Joins:'' When a job arrives at a fork point, it is split into N sub-jobs which are then serviced by n tasks. After being serviced, each sub-job waits until al ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Message Passing
In computer science, message passing is a technique for invoking behavior (i.e., running a program) on a computer. The invoking program sends a message to a process (which may be an actor or object) and relies on that process and its supporting infrastructure to then select and run some appropriate code. Message passing differs from conventional programming where a process, subroutine, or function is directly invoked by name. Message passing is key to some models of concurrency and object-oriented programming. Message passing is ubiquitous in modern computer software. It is used as a way for the objects that make up a program to work with each other and as a means for objects and systems running on different computers (e.g., the Internet) to interact. Message passing may be implemented by various mechanisms, including channels. Overview Message passing is a technique for invoking behavior (i.e., running a program) on a computer. In contrast to the traditional technique of callin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Inter-process Communication
In computer science, inter-process communication or interprocess communication (IPC) refers specifically to the mechanisms an operating system provides to allow the processes to manage shared data. Typically, applications can use IPC, categorized as clients and servers, where the client requests data and the server responds to client requests. Many applications are both clients and servers, as commonly seen in distributed computing. IPC is very important to the design process for microkernels and nanokernels, which reduce the number of functionalities provided by the kernel. Those functionalities are then obtained by communicating with servers via IPC, leading to a large increase in communication when compared to a regular monolithic kernel. IPC interfaces generally encompass variable analytic framework structures. These processes ensure compatibility between the multi-vector protocols upon which IPC models rely. An IPC mechanism is either synchronous or asynchronous. Synchr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


State (computer Science)
In information technology and computer science, a system is described as stateful if it is designed to remember preceding events or user interactions; the remembered information is called the state of the system. The set of states a system can occupy is known as its state space. In a discrete system, the state space is countable and often finite. The system's internal behaviour or interaction with its environment consists of separately occurring individual actions or events, such as accepting input or producing output, that may or may not cause the system to change its state. Examples of such systems are digital logic circuits and components, automata and formal language, computer programs, and computers. The output of a digital circuit or deterministic computer program at any time is completely determined by its current inputs and its state. Digital logic circuit state Digital logic circuits can be divided into two types: combinational logic, whose output signals are dependen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Threads (computer Science)
In computer science, a thread of execution is the smallest sequence of programmed instructions that can be managed independently by a scheduler, which is typically a part of the operating system. The implementation of threads and processes differs between operating systems. In Modern Operating Systems, Tanenbaum shows that many distinct models of process organization are possible.TANENBAUM, Andrew S. Modern Operating Systems. 1992. Prentice-Hall International Editions, ISBN 0-13-595752-4. In many cases, a thread is a component of a process. The multiple threads of a given process may be executed concurrently (via multithreading capabilities), sharing resources such as memory, while different processes do not share these resources. In particular, the threads of a process share its executable code and the values of its dynamically allocated variables and non- thread-local global variables at any given time. History Threads made an early appearance under the name of "tasks ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Caret
Caret is the name used familiarly for the character , provided on most QWERTY keyboards by typing . The symbol has a variety of uses in programming and mathematics. The name "caret" arose from its visual similarity to the original proofreader's caret, a mark used in proofreading to indicate where a punctuation mark, word, or phrase should be inserted into a document. The formal ASCII standard (X3.64.1977) calls it a "circumflex". History Typewriters On typewriters designed for languages that routinely use diacritics (accent marks), there are two possible ways to type these. Keys can be dedicated to precomposed characters (with the diacritic included) or alternatively a dead key mechanism can be provided. With the latter, a mark is made when a dead key is typed but, unlike normal keys, the paper carriage does not move on and thus the next letter to be typed is printed under the accent. The symbol was originally provided in typewriters and computer printers so that circumfl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Formal Specification
In computer science, formal specifications are mathematically based techniques whose purpose are to help with the implementation of systems and software. They are used to describe a system, to analyze its behavior, and to aid in its design by verifying key properties of interest through rigorous and effective reasoning tools. These specifications are ''formal'' in the sense that they have a syntax, their semantics fall within one domain, and they are able to be used to infer useful information. Motivation In each passing decade, computer systems have become increasingly more powerful and, as a result, they have become more impactful to society. Because of this, better techniques are needed to assist in the design and implementation of reliable software. Established engineering disciplines use mathematical analysis as the foundation of creating and validating product design. Formal specifications are one such way to achieve this in software engineering reliability as once predicted. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Programming Languages
A programming language is a system of notation for writing computer programs. Most programming languages are text-based formal languages, but they may also be graphical. They are a kind of computer language. The description of a programming language is usually split into the two components of syntax (form) and semantics (meaning), which are usually defined by a formal language. Some languages are defined by a specification document (for example, the C programming language is specified by an ISO Standard) while other languages (such as Perl) have a dominant implementation that is treated as a reference. Some languages have both, with the basic language defined by a standard and extensions taken from the dominant implementation being common. Programming language theory is the subfield of computer science that studies the design, implementation, analysis, characterization, and classification of programming languages. Definitions There are many considerations when defining w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Communicating Sequential Processes
In computer science, communicating sequential processes (CSP) is a formal language for describing patterns of interaction in concurrent systems. It is a member of the family of mathematical theories of concurrency known as process algebras, or process calculi, based on message passing via channels. CSP was highly influential in the design of the occam programming language and also influenced the design of programming languages such as Limbo, RaftLib, Erlang, Go, Crystal, and Clojure's core.async. CSP was first described in a 1978 article by Tony Hoare, but has since evolved substantially. CSP has been practically applied in industry as a tool for specifying and verifying the concurrent aspects of a variety of different systems, such as the T9000 Transputer, as well as a secure ecommerce system. The theory of CSP itself is also still the subject of active research, including work to increase its range of practical applicability (e.g., increasing the scale of the systems that can ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Concurrency (computer Science)
In computer science, concurrency is the ability of different parts or units of a program, algorithm, or problem to be executed out-of-order or in partial order, without affecting the outcome. This allows for parallel execution of the concurrent units, which can significantly improve overall speed of the execution in multi-processor and multi-core systems. In more technical terms, concurrency refers to the decomposability of a program, algorithm, or problem into order-independent or partially-ordered components or units of computation. According to Rob Pike, concurrency is the composition of independently executing computations, and concurrency is not parallelism: concurrency is about dealing with lots of things at once but parallelism is about doing lots of things at once. Concurrency is about structure, parallelism is about execution, concurrency provides a way to structure a solution to solve a problem that may (but not necessarily) be parallelizable. A number of mathema ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]