Babinet–Soleil Compensator
   HOME
*



picture info

Babinet–Soleil Compensator
The Babinet–Soleil compensator is a continuously variable, zero-order retarder. It consists of two birefringent wedges, one of which is movable, and another is fixed to a compensator plate. The orientation of the long axis of the wedges is perpendicular to the long axis of the compensator plate. References *Iizuka, K (2002). ''Elements of Photonics'', John Wiley & Sons. {{DEFAULTSORT:Babinet-Soleil Compensator Optical components Polarization (waves) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Babinet
Babinet is a surname. Notable people with the surname include: * Gilles Babinet (born 1967), French entrepreneur * Jacques Babinet (1794–1872), French scientist * Rémi Babinet (born 1957), French creative director Other uses * Babinet–Soleil compensator * Babinet's principle In physics, Babinet's principle states that the diffraction pattern from an opaque body is identical to that from a hole of the same size and shape except for the overall forward beam intensity. It was formulated in the 1800s by French physicist Ja ...
, physics theorem {{DEFAULTSORT:Babinet ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Wave Plate
A waveplate or retarder is an optics, optical device that alters the Polarization (waves), polarization state of a light wave travelling through it. Two common types of waveplates are the ''half-wave plate'', which shifts the polarization direction of linear polarization, linearly polarized light, and the ''quarter-wave plate'', which converts linearly polarized light into circular polarization, circularly polarized light and vice versa. A quarter-wave plate can be used to produce elliptical polarization as well. Waveplates are constructed out of a birefringence, birefringent material (such as quartz or mica, or even plastic), for which the index of refraction is different for light linearly polarized along one or the other of two certain perpendicular crystal axes. The behavior of a waveplate (that is, whether it is a half-wave plate, a quarter-wave plate, etc.) depends on the thickness of the crystal, the wavelength of light, and the variation of the index of refraction. By appro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Birefringent
Birefringence is the optics, optical property of a material having a refractive index that depends on the Polarization (waves), polarization and propagation direction of light. These optically anisotropic materials are said to be birefringent (or birefractive). The birefringence is often quantified as the maximum difference between refractive indices exhibited by the material. Crystals with non-cubic crystal structures are often birefringent, as are plastics under mechanical stress. Birefringence is responsible for the phenomenon of double refraction whereby a Ray (optics), ray of light, when incident upon a birefringent material, is split by polarization into two rays taking slightly different paths. This effect was first described by Danish scientist Rasmus Bartholin in 1669, who observed it in calcite, a crystal having one of the strongest birefringences. In the 19th century Augustin-Jean Fresnel described the phenomenon in terms of polarization, understanding light as a wave w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Optical Components
Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behaviour of visible, ultraviolet, and infrared light. Because light is an electromagnetic wave, other forms of electromagnetic radiation such as X-rays, microwaves, and radio waves exhibit similar properties. Most optical phenomena can be accounted for by using the classical electromagnetic description of light. Complete electromagnetic descriptions of light are, however, often difficult to apply in practice. Practical optics is usually done using simplified models. The most common of these, geometric optics, treats light as a collection of rays that travel in straight lines and bend when they pass through or reflect from surfaces. Physical optics is a more comprehensive model of light, which includes wave effects such as diffraction and interference that cannot be acc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]