Baade-Wesselink Method
   HOME
*





Baade-Wesselink Method
The Baade-Wesselink method is a method for determining the distance of a Cepheid variable star suggested by Walter Baade in 1926 and further developed by Adriaan Wesselink in 1946. In the original method the color of the star at various points during its period of variation is used to determine its surface brightness. Then, knowing the apparent magnitude at these points in time the angular diameter can be calculated. Measurements are also taken of the radial velocity using Doppler spectroscopy. This allows one to determine the speed at which the front surface of the star moves toward or away from us at various points in the cycle. Since the difference between this and the average speed is the derivative of the radius, one obtains the variation in radius. Combining this with the change in angular diameter gives the distance. It is now possible to measure the angular diameter of the pulsating star directly using optical interferometers, allowing a more accurate measurement of the sta ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cepheid Variable
A Cepheid variable () is a type of star that pulsates radially, varying in both diameter and temperature and producing changes in brightness with a well-defined stable period and amplitude. A strong direct relationship between a Cepheid variable's luminosity and pulsation period established Cepheids as important indicators of cosmic benchmarks for scaling galactic and extragalactic distances. This robust characteristic of classical Cepheids was discovered in 1908 by Henrietta Swan Leavitt after studying thousands of variable stars in the Magellanic Clouds. This discovery allows one to know the true luminosity of a Cepheid by simply observing its pulsation period. This in turn allows one to determine the distance to the star, by comparing its known luminosity to its observed brightness. The term ''Cepheid'' originates from Delta Cephei in the constellation Cepheus, identified by John Goodricke in 1784, the first of its type to be so identified. The mechanics of stellar pu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Walter Baade
Wilhelm Heinrich Walter Baade (March 24, 1893 – June 25, 1960) was a German astronomer who worked in the United States from 1931 to 1959. Biography The son of a teacher, Baade finished school in 1912. He then studied maths, physics and astronomy at the universities of Münster and Göttingen. After receiving his PhD in 1919, Baade worked at Hamburg Observatory at Bergedorf from 1919 to 1931. There in 1920 he discovered 944 Hidalgo, the first of a class of minor planets now called Centaurs which cross the orbits of giant planets. He worked at Mount Wilson Observatory from 1931 to 1958. There, during World War II, he took advantage of wartime blackout conditions (which reduced light pollution), to resolve stars in the center of the Andromeda Galaxy for the first time. These observations led him to define distinct "populations" for stars (Population I and Population II). The same observations led him to discover that there are two types of Cepheid variable stars. Using this disc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Adriaan Wesselink
Adriaan Jan Wesselink (1909–1995) was a Dutch astronomer who worked successively in the Netherlands, South Africa and the United States. He specialised in observing and understanding the characteristics of stars, particularly variable stars. Early life Adriaan Wesselink was born on 7 April 1909 in Hellevoetsluis in the Netherlands. His father was a medical doctor and his mother was a nurse. Inspired by his parents, Adriaan Wesselink developed an interest in science. Wesselink studied physics, mathematics and astronomy at Utrecht University, leading to the award of a bachelor of science degree. Astronomical research in the Netherlands Wesselink proceeded to Leiden University where he was appointed to an assistantship. He pursued research into variable stars. He was trained by prominent astronomers including Ejnar Hertzsprung, Willem de Sitter and Jan Woltjer. He made photographic observations of the brightness of the Sun during the total eclipse of 19 June 1936 outside of t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bulletin Of The Astronomical Institutes Of The Netherlands
''Astronomy & Astrophysics'' is a monthly peer-reviewed scientific journal covering theoretical, observational, and instrumental astronomy and astrophysics. The journal is run by a Board of Directors representing 27 sponsoring countries plus a representative of the European Southern Observatory. The journal is published by EDP Sciences and the editor-in-chief is . History Origins ''Astronomy and Astrophysics'' (A&A) was created as an answer to the publishing scenario found in Europe in the 1960s. At that time, multiple journals were being published in several countries around the continent. These journals usually had a limited number of subscribers, and published articles in languages other than English, resulting in a small number of citations compared to American and British journals. Starting in 1963, conversations between astronomers from European countries assessed the need for a common astronomical journal. On 8 April 1968, leading astronomers from Belgium, Denmark, F ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Surface Brightness
In astronomy, surface brightness (SB) quantifies the apparent brightness or flux density per unit angular area of a spatially extended object such as a galaxy or nebula, or of the night sky background. An object's surface brightness depends on its surface luminosity density, i.e., its luminosity emitted per unit surface area. In visible and infrared astronomy, surface brightness is often quoted on a magnitude scale, in magnitudes per square arcsecond (MPSAS) in a particular filter band or photometric system. Measurement of the surface brightnesses of celestial objects is called surface photometry. General description The total magnitude is a measure of the brightness of an extended object such as a nebula, cluster, galaxy or comet. It can be obtained by summing up the luminosity over the area of the object. Alternatively, a photometer can be used by applying apertures or slits of different sizes of diameter. The background light is then subtracted from the measurement to obtain t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Apparent Magnitude
Apparent magnitude () is a measure of the brightness of a star or other astronomical object observed from Earth. An object's apparent magnitude depends on its intrinsic luminosity, its distance from Earth, and any extinction of the object's light caused by interstellar dust along the line of sight to the observer. The word ''magnitude'' in astronomy, unless stated otherwise, usually refers to a celestial object's apparent magnitude. The magnitude scale dates back to the ancient Roman astronomer Claudius Ptolemy, whose star catalog listed stars from 1st magnitude (brightest) to 6th magnitude (dimmest). The modern scale was mathematically defined in a way to closely match this historical system. The scale is reverse logarithmic: the brighter an object is, the lower its magnitude number. A difference of 1.0 in magnitude corresponds to a brightness ratio of \sqrt /math>, or about 2.512. For example, a star of magnitude 2.0 is 2.512 times as bright as a star of magnitude 3.0, 6. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Angular Diameter
The angular diameter, angular size, apparent diameter, or apparent size is an angular distance describing how large a sphere or circle appears from a given point of view. In the vision sciences, it is called the visual angle, and in optics, it is the angular aperture (of a lens). The angular diameter can alternatively be thought of as the angular displacement through which an eye or camera must rotate to look from one side of an apparent circle to the opposite side. Humans can resolve with their naked eyes diameters of up to about 1 arcminute (approximately 0.017° or 0.0003 radians). This corresponds to 0.3 m at a 1 km distance, or to perceiving Venus as a disk under optimal conditions. Formula The angular diameter of a circle whose plane is perpendicular to the displacement vector between the point of view and the center of said circle can be calculated using the formula :\delta = 2\arctan \left(\frac\right), in which \delta is the angular diameter, and d is the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Radial Velocity
The radial velocity or line-of-sight velocity, also known as radial speed or range rate, of a target with respect to an observer is the temporal rate of change, rate of change of the distance or Slant range, range between the two points. It is equivalent to the vector projection of the target-observer relative velocity onto the relative direction (geometry), relative direction connecting the two points. In astronomy, the point is usually taken to be the observer on Earth, so the radial velocity then denotes the speed with which the object moves away from the Earth (or approaches it, for a negative radial velocity). Formulation Given a differentiable vector \mathbf \in \mathbb^3 defining the instantaneous position of a target relative to an observer. Let with \mathbf \in \mathbb^3, the instantaneous velocity of the target with respect to the observer. The magnitude of the position vector \mathbf is defined as The quantity range rate is the time derivative of the magnitud ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Doppler Spectroscopy
Doppler spectroscopy (also known as the radial-velocity method, or colloquially, the wobble method) is an indirect method for finding extrasolar planets and brown dwarfs from radial-velocity measurements via observation of Doppler shifts in the spectrum of the planet's parent star. 1,018 extrasolar planets (about 19.5% of the total) have been discovered using Doppler spectroscopy, as of November 2022. History Otto Struve proposed in 1952 the use of powerful spectrographs to detect distant planets. He described how a very large planet, as large as Jupiter, for example, would cause its parent star to wobble slightly as the two objects orbit around their center of mass. He predicted that the small Doppler shifts to the light emitted by the star, caused by its continuously varying radial velocity, would be detectable by the most sensitive spectrographs as tiny redshifts and blueshifts in the star's emission. However, the technology of the time produced radial-velocity meas ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Astronomical Interferometer
An astronomical interferometer or telescope array is a set of separate telescopes, mirror segments, or radio telescope antenna (radio), antennas that work together as a single telescope to provide higher resolution images of astronomical objects such as stars, nebulas and galaxy, galaxies by means of interferometry. The advantage of this technique is that it can theoretically produce images with the angular resolution of a huge telescope with an aperture equal to the separation between the component telescopes. The main drawback is that it does not collect as much light as the complete instrument's mirror. Thus it is mainly useful for fine resolution of more luminous astronomical objects, such as close binary stars. Another drawback is that the maximum angular size of a detectable emission source is limited by the minimum gap between detectors in the collector array. Interferometry is most widely used in radio astronomy, in which signals from separate radio telescopes are combi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Type II Supernova
A Type II supernova (plural: ''supernovae'' or ''supernovas'') results from the rapid collapse and violent explosion of a massive star. A star must have at least 8 times, but no more than 40 to 50 times, the mass of the Sun () to undergo this type of explosion. Type II supernovae are distinguished from other types of supernovae by the presence of hydrogen in their spectra. They are usually observed in the spiral arms of galaxies and in H II regions, but not in elliptical galaxies; those are generally composed of older, low-mass stars, with few of the young, very massive stars necessary to cause a supernova. Stars generate energy by the nuclear fusion of elements. Unlike the Sun, massive stars possess the mass needed to fuse elements that have an atomic mass greater than hydrogen and helium, albeit at increasingly higher temperatures and pressures, causing correspondingly shorter stellar life spans. The degeneracy pressure of electrons and the energy generated by th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Astronomy
Astronomy () is a natural science that studies astronomical object, celestial objects and phenomena. It uses mathematics, physics, and chemistry in order to explain their origin and chronology of the Universe, evolution. Objects of interest include planets, natural satellite, moons, stars, nebulae, galaxy, galaxies, and comets. Relevant phenomena include supernova explosions, gamma ray bursts, quasars, blazars, pulsars, and cosmic microwave background radiation. More generally, astronomy studies everything that originates beyond atmosphere of Earth, Earth's atmosphere. Cosmology is a branch of astronomy that studies the universe as a whole. Astronomy is one of the oldest natural sciences. The early civilizations in recorded history made methodical observations of the night sky. These include the Babylonian astronomy, Babylonians, Greek astronomy, Greeks, Indian astronomy, Indians, Egyptian astronomy, Egyptians, Chinese astronomy, Chinese, Maya civilization, Maya, and many anc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]