BIP-8
   HOME
*





BIP-8
BIP-8 (alternatively, BIP8) is an abbreviation for ''bit-interleaved parity 8''. BIP-8 consists of a parity byte calculated bit-wise across a large number of bytes in a transmission transport frame. BIP-8 bits are set such that the overall data stream, including the BIP-8 byte, has even parity. BIP-8 is used in the SONET/SDH and Optical Transport Network standards, as well as in some older PDH framing schemes such as DS3 and E3. BIP-8 has no error-correcting functionality: like the CRC-6 bits in the much older extended superframe format, it merely provides an approximate method for monitoring link quality at the bit error level. See also * Errored second In telecommunications and data communication systems, an errored second is an interval of a second during which any error whatsoever has occurred, regardless of whether that error was a single bit error, or a complete loss of communication for that ... References Network protocols {{telecom-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Parity (mathematics)
In mathematics, parity is the property of an integer of whether it is even or odd. An integer is even if it is a multiple of two, and odd if it is not.. For example, −4, 0, 82 are even because \begin -2 \cdot 2 &= -4 \\ 0 \cdot 2 &= 0 \\ 41 \cdot 2 &= 82 \end By contrast, −3, 5, 7, 21 are odd numbers. The above definition of parity applies only to integer numbers, hence it cannot be applied to numbers like 1/2 or 4.201. See the section "Higher mathematics" below for some extensions of the notion of parity to a larger class of "numbers" or in other more general settings. Even and odd numbers have opposite parities, e.g., 22 (even number) and 13 (odd number) have opposite parities. In particular, the parity of zero is even. Any two consecutive integers have opposite parity. A number (i.e., integer) expressed in the decimal numeral system is even or odd according to whether its last digit is even or odd. That is, if the last digit is 1, 3, 5, 7, or 9, then it is odd; otherwis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Byte
The byte is a unit of digital information that most commonly consists of eight bits. Historically, the byte was the number of bits used to encode a single character of text in a computer and for this reason it is the smallest addressable unit of memory in many computer architectures. To disambiguate arbitrarily sized bytes from the common 8-bit definition, network protocol documents such as The Internet Protocol () refer to an 8-bit byte as an octet. Those bits in an octet are usually counted with numbering from 0 to 7 or 7 to 0 depending on the bit endianness. The first bit is number 0, making the eighth bit number 7. The size of the byte has historically been hardware-dependent and no definitive standards existed that mandated the size. Sizes from 1 to 48 bits have been used. The six-bit character code was an often-used implementation in early encoding systems, and computers using six-bit and nine-bit bytes were common in the 1960s. These systems often had memory words ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Synchronous Optical Networking
Synchronous optical networking (SONET) and synchronous digital hierarchy (SDH) are standardized protocols that transfer multiple digital bit streams synchronously over optical fiber using lasers or highly coherent light from light-emitting diodes (LEDs). At low transmission rates data can also be transferred via an electrical interface. The method was developed to replace the plesiochronous digital hierarchy (PDH) system for transporting large amounts of telephone calls and data traffic over the same fiber without the problems of synchronization. SONET and SDH, which are essentially the same, were originally designed to transport circuit mode communications (e.g., DS1, DS3) from a variety of different sources, but they were primarily designed to support real-time, uncompressed, circuit-switched voice encoded in PCM format. The primary difficulty in doing this prior to SONET/SDH was that the synchronization sources of these various circuits were different. This meant that each ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Plesiochronous Digital Hierarchy
The plesiochronous digital hierarchy (PDH) is a technology used in telecommunications networks to transport large quantities of data over digital transport equipment such as fibre optic and microwave radio systems. The term ''plesiochronous'' is derived from Greek ''plēsios'', meaning near, and ''chronos'', time, and refers to the fact that PDH networks run in a state where different parts of the network are nearly, but not quite perfectly, synchronized. Backbone transport networks replaced PDH networks with synchronous digital hierarchy (SDH) or synchronous optical networking (SONET) equipment over the ten years ending around the turn of the millennium (2000), whose floating payloads relaxed the more stringent timing requirements of PDH network technology. The cost in North America was $4.5 billion in 1998 alone, p. 171. PDH allows transmission of data streams that are nominally running at the same rate, but allowing some variation on the speed around a nominal rate. By ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Digital Signal 3
A Digital Signal 3 (DS3) is a digital signal level 3 T-carrier. It may also be referred to as a T3 line. *The data rate for this type of signal is 44.736 Mbit/s (45 Mb). *DS3 uses 75ohm coaxial cable and BNC connectors. *This level of carrier can transport 28 DS1 level signals within its payload. *This level of carrier can transport 672 DS0 level channels within its payload. *Such circuits are the usual kind between telephony carriers, both wired and wireless, and typically by OC1 optical connections. Cabling DS3 interconnect cables must be made with true 75-ohm coaxial cable and connectors. Cables or connectors which are 50 ohms or which significantly deviate from 75 ohms will result in signal reflections which will lower the performance of the connection, possibly to the point of not working. GR-139-CORE ''Generic Requirements for Central Office Coaxial Cable'', defines type 734 and 735 cables for this application. Due to losses, there are differing distance limitations for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




E-carrier
The E-carrier is a member of the series of carrier systems developed for digital transmission of many simultaneous telephone calls by time-division multiplexing. The European Conference of Postal and Telecommunications Administrations (CEPT) originally standardized the E-carrier system, which revised and improved the earlier American T-carrier technology, and this has now been adopted by the International Telecommunication Union Telecommunication Standardization Sector (ITU-T). It was widely used in almost all countries outside the US, Canada, and Japan. E-carrier deployments have steadily been replaced by Ethernet as telecommunication networks transition towards all IP. E1 frame structure An E1 link operates over two separate sets of wires, usually unshielded twisted pair (balanced cable) or using coaxial (unbalanced cable). A nominal 3 volt peak signal is encoded with pulses using a method avoiding long periods without polarity changes. The line data rate is 2.048 Mbit/s ( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Error-correcting Code
In computing, telecommunication, information theory, and coding theory, an error correction code, sometimes error correcting code, (ECC) is used for controlling errors in data over unreliable or noisy communication channels. The central idea is the sender encodes the message with redundant information in the form of an ECC. The redundancy allows the receiver to detect a limited number of errors that may occur anywhere in the message, and often to correct these errors without retransmission. The American mathematician Richard Hamming pioneered this field in the 1940s and invented the first error-correcting code in 1950: the Hamming (7,4) code. ECC contrasts with error detection in that errors that are encountered can be corrected, not simply detected. The advantage is that a system using ECC does not require a reverse channel to request retransmission of data when an error occurs. The downside is that there is a fixed overhead that is added to the message, thereby requiring a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Extended Superframe
In telecommunications, superframe (SF) is a T1 framing standard. In the 1970s it replaced the original T1/D1 framing scheme of the 1960s in which the framing bit simply alternated between 0 and 1. Superframe is sometimes called D4 Framing to avoid confusion with single-frequency signaling. It was first supported by the D2 channel bank, but it was first widely deployed with the D4 channel bank. In order to determine where each channel is located in the stream of data being received, each set of 24 channels is aligned in a frame. The frame is 192 bits long (8 * 24), and is terminated with a 193rd bit, the framing bit, which is used to find the end of the frame. In order for the framing bit to be located by receiving equipment, a predictable pattern is sent on this bit. Equipment will search for a bit which has the correct pattern, and will align its framing based on that bit. The pattern sent is 12 bits long, so every group of 12 frames is called a superframe. The pattern ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Errored Second
In telecommunications and data communication systems, an errored second is an interval of a second during which any error whatsoever has occurred, regardless of whether that error was a single bit error, or a complete loss of communication for that entire second; the type of error is not important for the purpose of counting errored seconds. In communication systems with very low uncorrected bit error rates, such as modern fiber optic transmission systems, or systems with higher low-level error rates that are corrected using large amounts of forward error correction, errored seconds are often a better measure of the effective user-visible error rate than the raw bit error rate. For many modern packet-switched communication systems, even a single uncorrected bit error is enough to cause the loss of a data packet by causing its CRC check to fail; whether that packet loss was caused by a single bit error or a hundred-bit-long error burst In telecommunication, a burst error or er ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]