BES III
   HOME
*





BES III
The Beijing Spectrometer III (BES III) is a particle physics experiment at the Beijing Electron–Positron Collider II (BEPC II) at the Institute of High Energy Physics (IHEP). It is designed to study the physics of charm, charmonium, and light hadron decays. It also performs studies of the tau lepton, tests of QCD, and searches for physics beyond the Standard Model. The experiment started collecting data in the summer of 2008. Beam BES III receives electron–positron collisions from BEPC II: a circular collider with a circumference of 240 m. BEPC II maintains a variable collision energy between 2 and 4.63 GeV, with a luminosity of 1033 cm−2·s−1. Each of the beams contains 93 electron or positron bunches of length 1.5 cm and a total current of 0.91 A. Detector The BES III detector is a cylindrically symmetric 6-meter long and 7-meter diameter detector surrounding the interaction point of 2 beam pipe rings. It has 4 major detector layers: a main drift chamber (MD ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Particle Physics
Particle physics or high energy physics is the study of fundamental particles and forces that constitute matter and radiation. The fundamental particles in the universe are classified in the Standard Model as fermions (matter particles) and bosons (force-carrying particles). There are three generations of fermions, but ordinary matter is made only from the first fermion generation. The first generation consists of up and down quarks which form protons and neutrons, and electrons and electron neutrinos. The three fundamental interactions known to be mediated by bosons are electromagnetism, the weak interaction, and the strong interaction. Quarks cannot exist on their own but form hadrons. Hadrons that contain an odd number of quarks are called baryons and those that contain an even number are called mesons. Two baryons, the proton and the neutron, make up most of the mass of ordinary matter. Mesons are unstable and the longest-lived last for only a few hundredths of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


International Journal Of Modern Physics A
The ''International Journal of Modern Physics'' is a series of Physics journals published by World Scientific. ''International Journal of Modern Physics A'' The ''International Journal of Modern Physics A'' was established in 1986, and covers specifically particles and fields, gravitation, cosmology, and nuclear physics. The journal is abstracted and indexed in: ''International Journal of Modern Physics B'' The ''International Journal of Modern Physics B'' was established in 1987. It covers specifically developments in condensed matter, statistical and applied physics, and high Tc superconductivity. The journal is abstracted and indexed in: ''International Journal of Modern Physics C'' The ''International Journal of Modern Physics C'' was established in 1990. It covers specifically computational physics Computational physics is the study and implementation of numerical analysis to solve problems in physics for which a quantitative theory already exists. Historical ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Monte Carlo Method
Monte Carlo methods, or Monte Carlo experiments, are a broad class of computational algorithms that rely on repeated random sampling to obtain numerical results. The underlying concept is to use randomness to solve problems that might be deterministic in principle. They are often used in physical and mathematical problems and are most useful when it is difficult or impossible to use other approaches. Monte Carlo methods are mainly used in three problem classes: optimization, numerical integration, and generating draws from a probability distribution. In physics-related problems, Monte Carlo methods are useful for simulating systems with many coupled degrees of freedom, such as fluids, disordered materials, strongly coupled solids, and cellular structures (see cellular Potts model, interacting particle systems, McKean–Vlasov processes, kinetic models of gases). Other examples include modeling phenomena with significant uncertainty in inputs such as the calculation of ris ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Trigger (particle Physics)
In particle physics, a trigger is a system that uses criteria to rapidly decide which events in a particle detector In experimental and applied particle physics, nuclear physics, and nuclear engineering, a particle detector, also known as a radiation detector, is a device used to detect, track, and/or identify ionizing particles, such as those produced by nu ... to keep when only a small fraction of the total can be recorded. Trigger systems are necessary due to real-world limitations in computing power, data storage capacity and rates. Since experiments are typically searching for "interesting" events (such as decays of rare particles) that occur at a relatively low rate, trigger systems are used to identify the events that should be recorded for later analysis. Current accelerators have event rates greater than 1 MHz and trigger rates that can be below 10 Hz. The ratio of the trigger rate to the event rate is referred to as the selectivity of the trigger. For example, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Caesium Iodide
Caesium iodide or cesium iodide (chemical formula CsI) is the ionic compound of caesium and iodine. It is often used as the input phosphor of an X-ray image intensifier tube found in fluoroscopy equipment. Caesium iodide photocathodes are highly efficient at extreme ultraviolet wavelengths. Synthesis and structure Bulk caesium iodide crystals have the cubic CsCl crystal structure, but the structure type of nanometer-thin CsI films depends on the substrate material – it is CsCl for mica and NaCl for LiF, NaBr and NaCl substrates. Caesium iodide atomic chains can be grown inside double-wall carbon nanotubes. In such chains I atoms appear brighter than Cs atoms in electron micrographs despite having a smaller mass. This difference was explained by the charge difference between Cs atoms (positive), inner nanotube walls (negative) and I atoms (negative). As a result, Cs atoms are attracted to the walls and vibrate more strongly than I atoms, which are pushed toward the nanot ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Photomultiplier
A photomultiplier is a device that converts incident photons into an electrical signal. Kinds of photomultiplier include: * Photomultiplier tube, a vacuum tube converting incident photons into an electric signal. Photomultiplier tubes (PMTs for short) are members of the class of vacuum tubes, and more specifically vacuum phototubes, which are extremely sensitive detectors of light in the ultraviolet, visible, and near-infrared ranges of the electromagnetic spectrum. ** Magnetic photomultiplier, developed by the Soviets in the 1930s. ** Electrostatic photomultiplier, a kind of photomultiplier tube demonstrated by Jan Rajchman of RCA Laboratories in Princeton, NJ in the late 1930s which became the standard for all future commercial photomultipliers. The first mass-produced photomultiplier, the Type 931, was of this design and is still commercially produced today. * Silicon photomultiplier, a solid-state device converting incident photons into an electric signal. Silicon photomultiplie ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Scintillation (physics)
Scintillation is the physical process where a material, called scintillator, emits UV or visible light under excitation from high energy photons (X-rays or γ-rays) or energetic particles,(such as electrons, alpha particles, neutrons or ions). See scintillator and scintillation counter for practical applications. Overview The process of scintillation is one of luminescence whereby light of a characteristic spectrum is emitted following the absorption of radiation. The scintillation process can be summarized in three main stages (A) conversion, (B) transport and energy transfer to the luminescence center, and (C) luminescence. The emitted radiation is usually less energetic than the absorbed radiation, hence generally scintillation is a down-conversion process. Conversion processes The first stage of scintillation, conversion, is the process where the energy from the incident radiation is absorbed by the scintillator and highly energetic electrons and holes are created in th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cosmic Rays
Cosmic rays are high-energy particles or clusters of particles (primarily represented by protons or atomic nuclei) that move through space at nearly the speed of light. They originate from the Sun, from outside of the Solar System in our own galaxy, and from distant galaxies. Upon impact with Earth's atmosphere, cosmic rays produce showers of secondary particles, some of which reach the surface, although the bulk is deflected off into space by the magnetosphere or the heliosphere. Cosmic rays were discovered by Victor Hess in 1912 in balloon experiments, for which he was awarded the 1936 Nobel Prize in Physics. Direct measurement of cosmic rays, especially at lower energies, has been possible since the launch of the first satellites in the late 1950s. Particle detectors similar to those used in nuclear and high-energy physics are used on satellites and space probes for research into cosmic rays. Data from the Fermi Space Telescope (2013) have been interpreted as evidence ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Wire Chamber
A wire chamber or multi-wire proportional chamber is a type of proportional counter that detects charged particles and photons and can give positional information on their trajectory, by tracking the trails of gaseous ionization. was located via Dr. C.N. BootPHY304 Particle Physics Sheffield University/ref> Description The multi-wire chamber uses an array of wires at high voltage (anode), which run through a chamber with conductive walls held at ground potential (cathode). Alternatively, the wires may be at ground potential and the cathode held at a high negative voltage; the important thing is that a uniform electric field draws extra electrons or negative ions to the anode wires with little lateral motion. The chamber is filled with carefully chosen gas, such as an argon/methane mix, such that any ionizing particle that passes through the tube will ionize surrounding gaseous atoms. The resulting ions and electrons are accelerated by the electric field across the chamber, causi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Solenoid
upright=1.20, An illustration of a solenoid upright=1.20, Magnetic field created by a seven-loop solenoid (cross-sectional view) described using field lines A solenoid () is a type of electromagnet formed by a helix, helical coil of wire whose length is substantially greater than its diameter, which generates a controlled magnetic field. The coil can produce a uniform magnetic field in a volume of space when an electric current is passed through it. The term ''solenoid'' was coined in 1823 by André-Marie Ampère. The helical coil of a solenoid does not necessarily need to revolve around a straight-line axis; for example, William Sturgeon's electromagnet of 1824 consisted of a solenoid bent into a horseshoe shape (not unlike an arc spring). Solenoids provide magnetic focusing of electrons in vacuums, notably in television camera tubes such as vidicons and image orthicons. Electrons take helical paths within the magnetic field. These solenoids, focus coils, surround nearly th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Superconducting
Superconductivity is a set of physical properties observed in certain materials where Electrical resistance and conductance, electrical resistance vanishes and magnetic field, magnetic flux fields are expelled from the material. Any material exhibiting these properties is a superconductor. Unlike an ordinary metallic electrical conductor, conductor, whose resistance decreases gradually as its temperature is lowered even down to near absolute zero, a superconductor has a characteristic Phase transition, critical temperature below which the resistance drops abruptly to zero. An electric current through a loop of superconducting wire can persist indefinitely with no power source. The superconductivity phenomenon was discovered in 1911 by Dutch physicist Heike Kamerlingh Onnes. Like ferromagnetism and atomic spectral lines, superconductivity is a phenomenon which can only be explained by quantum mechanics. It is characterized by the Meissner effect, the complete ejection of magne ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Interaction Point
In particle physics, an interaction point (IP) is the place where particles collide in an accelerator experiment. The ''nominal'' interaction point is the design position, which may differ from the ''real'' or ''physics'' interaction point, where the particles actually collide. A related, but distinct, concept is the ''primary vertex'': the reconstructed location of an individual particle collision. For fixed target experiments, the interaction point is the point where beam and target interact. For colliders, it is the place where the beams interact. Experiments (detectors) at particle accelerators are built around the nominal interaction points of the accelerators. The whole region around the interaction point (the experimental hall) is called an interaction region. Particle colliders such as LEP, HERA, RHIC, Tevatron The Tevatron was a circular particle accelerator (active until 2011) in the United States, at the Fermi National Accelerator Laboratory (also known as ''F ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]