BB84
   HOME
*





BB84
BB84 is a quantum key distribution scheme developed by Charles Bennett and Gilles Brassard in 1984. It is the first quantum cryptography protocol. The protocol is provably secure, relying on two conditions: (1) the quantum property that information gain is only possible at the expense of disturbing the signal if the two states one is trying to distinguish are not orthogonal (see no-cloning theorem); and (2) the existence of an authenticated public classical channel. It is usually explained as a method of securely communicating a private key from one party to another for use in one-time pad encryption.''Quantum Computing and Quantum Information'', Michael Nielsen and Isaac Chuang, Cambridge University Press 2000 Description In the BB84 scheme, Alice wishes to send a private key to Bob. She begins with two strings of bits, a and b, each n bits long. She then encodes these two strings as a tensor product of n qubits: :, \psi\rangle = \bigotimes_^, \psi_\rangle, where a_i and b_i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Key Distribution
Quantum key distribution (QKD) is a secure communication method which implements a cryptographic protocol involving components of quantum mechanics. It enables two parties to produce a shared random secret key known only to them, which can then be used to encrypt and decrypt messages. It is often incorrectly called quantum cryptography, as it is the best-known example of a quantum cryptographic task. An important and unique property of quantum key distribution is the ability of the two communicating users to detect the presence of any third party trying to gain knowledge of the key. This results from a fundamental aspect of quantum mechanics: the process of measuring a quantum system in general disturbs the system. A third party trying to eavesdrop on the key must in some way measure it, thus introducing detectable anomalies. By using quantum superpositions or quantum entanglement and transmitting information in quantum states, a communication system can be implemented that detect ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Key Distribution
Quantum key distribution (QKD) is a secure communication method which implements a cryptographic protocol involving components of quantum mechanics. It enables two parties to produce a shared random secret key known only to them, which can then be used to encrypt and decrypt messages. It is often incorrectly called quantum cryptography, as it is the best-known example of a quantum cryptographic task. An important and unique property of quantum key distribution is the ability of the two communicating users to detect the presence of any third party trying to gain knowledge of the key. This results from a fundamental aspect of quantum mechanics: the process of measuring a quantum system in general disturbs the system. A third party trying to eavesdrop on the key must in some way measure it, thus introducing detectable anomalies. By using quantum superpositions or quantum entanglement and transmitting information in quantum states, a communication system can be implemented that detect ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


SARG04
SARG04 (named after Valerio Scarani, Antonio Acin, Gregoire Ribordy, and Nicolas Gisin) is a 2004 quantum cryptography protocol derived from the first protocol of that kind, BB84. Origin Researchers built SARG04 when they noticed that by using the four states of BB84 with a different information encoding they could develop a new protocol which would be more robust, especially against the photon-number-splitting attack, when attenuated laser pulses are used instead of single-photon sources. SARG04 was defined by Scarani et al. in 2004 in Physical Review Letters as a prepare and measure version (in which it is equivalent to BB84 when viewed at the level of quantum processing). An entanglement-based version has been defined as well. Description In the SARG04 scheme, Alice wishes to send a private key to Bob. She begins with two strings of bits, a and b, each n bits long. She then encodes these two strings as a string of n qubits, , \psi\rangle = \bigotimes_^, \psi_\rangle. a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quantum Cryptography Protocols
Quantum key distribution (QKD) protocols are used in quantum key distribution. The first protocol of that kind was BB84, introduced in 1984 by Charles H. Bennett and Gilles Brassard. After that, many other protocols have been defined. List of quantum key distribution protocols *BB84 (1984) is a quantum key distribution scheme that allows two parties to securely communicate a private key for use in one-time pad encryption using the quantum property that information gain is only possible at the expense of disturbing the signal if the two states one is trying to distinguish are not orthogonal and an authenticated public classical channel. *E91 protocol (1991) is a quantum cryptography method that uses entangled pairs of photons to generate keys for secure communication, with the ability to detect any attempts at eavesdropping by an external party through the violation of Bell's Theorem and the preservation of perfect correlation between the measurements of the two parties. * BBM92 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quantum Cryptography Protocol
Quantum key distribution (QKD) protocols are used in quantum key distribution. The first protocol of that kind was BB84, introduced in 1984 by Charles H. Bennett and Gilles Brassard. After that, many other protocols have been defined. List of quantum key distribution protocols *BB84 (1984) is a quantum key distribution scheme that allows two parties to securely communicate a private key for use in one-time pad encryption using the quantum property that information gain is only possible at the expense of disturbing the signal if the two states one is trying to distinguish are not orthogonal and an authenticated public classical channel. *E91 protocol (1991) is a quantum cryptography method that uses entangled pairs of photons to generate keys for secure communication, with the ability to detect any attempts at eavesdropping by an external party through the violation of Bell's Theorem and the preservation of perfect correlation between the measurements of the two parties. * BBM92 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Quantum Cryptography
Quantum cryptography is the science of exploiting quantum mechanical properties to perform cryptographic tasks. The best known example of quantum cryptography is quantum key distribution which offers an information-theoretically secure solution to the key exchange problem. The advantage of quantum cryptography lies in the fact that it allows the completion of various cryptographic tasks that are proven or conjectured to be impossible using only classical (i.e. non-quantum) communication. For example, it is impossible to copy data encoded in a quantum state. If one attempts to read the encoded data, the quantum state will be changed due to wave function collapse (no-cloning theorem). This could be used to detect eavesdropping in quantum key distribution (QKD). History In the early 1970s, Stephen Wiesner, then at Columbia University in New York, introduced the concept of quantum conjugate coding. His seminal paper titled "Conjugate Coding" was rejected by the IEEE Information T ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quantum Cryptography
Quantum cryptography is the science of exploiting quantum mechanical properties to perform cryptographic tasks. The best known example of quantum cryptography is quantum key distribution which offers an information-theoretically secure solution to the key exchange problem. The advantage of quantum cryptography lies in the fact that it allows the completion of various cryptographic tasks that are proven or conjectured to be impossible using only classical (i.e. non-quantum) communication. For example, it is impossible to copy data encoded in a quantum state. If one attempts to read the encoded data, the quantum state will be changed due to wave function collapse (no-cloning theorem). This could be used to detect eavesdropping in quantum key distribution (QKD). History In the early 1970s, Stephen Wiesner, then at Columbia University in New York, introduced the concept of quantum conjugate coding. His seminal paper titled "Conjugate Coding" was rejected by the IEEE Information T ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quantum Cryptography
Quantum cryptography is the science of exploiting quantum mechanical properties to perform cryptographic tasks. The best known example of quantum cryptography is quantum key distribution which offers an information-theoretically secure solution to the key exchange problem. The advantage of quantum cryptography lies in the fact that it allows the completion of various cryptographic tasks that are proven or conjectured to be impossible using only classical (i.e. non-quantum) communication. For example, it is impossible to copy data encoded in a quantum state. If one attempts to read the encoded data, the quantum state will be changed due to wave function collapse (no-cloning theorem). This could be used to detect eavesdropping in quantum key distribution (QKD). History In the early 1970s, Stephen Wiesner, then at Columbia University in New York, introduced the concept of quantum conjugate coding. His seminal paper titled "Conjugate Coding" was rejected by the IEEE Information T ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


One-time Pad
In cryptography, the one-time pad (OTP) is an encryption technique that cannot be cracked, but requires the use of a single-use pre-shared key that is not smaller than the message being sent. In this technique, a plaintext is paired with a random secret key (also referred to as ''a one-time pad''). Then, each bit or character of the plaintext is encrypted by combining it with the corresponding bit or character from the pad using modular addition. The resulting ciphertext will be impossible to decrypt or break if the following four conditions are met: #The key must be at least as long as the plaintext. #The key must be random ( uniformly distributed in the set of all possible keys and independent of the plaintext), entirely sampled from a non-algorithmic, chaotic source such as a hardware random number generator. It is not sufficient for OTP keys to pass statistical randomness tests as such tests cannot measure entropy, and the number of bits of entropy must be at least equa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Gilles Brassard
Gilles Brassard, is a faculty member of the Université de Montréal, where he has been a Full Professor since 1988 and Canada Research Chair since 2001. Education and early life Brassard received a Ph.D. in Computer Science from Cornell University in 1979, working in the field of cryptography with John Hopcroft as his advisor. Research Brassard is best known for his fundamental work in quantum cryptography, quantum teleportation, quantum entanglement distillation, quantum pseudo-telepathy, and the classical simulation of quantum entanglement.Herzberg runner-up: Gilles Brassard


Quantum Information Science
Quantum information science is an interdisciplinary field that seeks to understand the analysis, processing, and transmission of information using quantum mechanics principles. It combines the study of Information science with quantum effects in physics. It includes theoretical issues in computational models and more experimental topics in quantum physics, including what can and cannot be done with quantum information. The term quantum information theory is also used, but it fails to encompass experimental research, and can be confused with a subfield of quantum information science that addresses the processing of quantum information. Scientific and engineering studies To understand quantum teleportation, quantum entanglement and the manufacturing of quantum computer hardware requires a thorough understanding of quantum physics and engineering. Since 2010s, there has been remarkable progress in manufacturing quantum computers, with companies like Google and IBM investing heavily ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cryptographic Algorithms
Cryptography, or cryptology (from grc, , translit=kryptós "hidden, secret"; and ''graphein'', "to write", or '' -logia'', "study", respectively), is the practice and study of techniques for secure communication in the presence of adversarial behavior. More generally, cryptography is about constructing and analyzing protocols that prevent third parties or the public from reading private messages. Modern cryptography exists at the intersection of the disciplines of mathematics, computer science, information security, electrical engineering, digital signal processing, physics, and others. Core concepts related to information security ( data confidentiality, data integrity, authentication, and non-repudiation) are also central to cryptography. Practical applications of cryptography include electronic commerce, chip-based payment cards, digital currencies, computer passwords, and military communications. Cryptography prior to the modern age was effectively synonymous wit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]