Bézout's Theorem
In algebraic geometry, Bézout's theorem is a statement concerning the number of common zeros of polynomials in indeterminates. In its original form the theorem states that ''in general'' the number of common zeros equals the product of the degrees of the polynomials. It is named after Étienne Bézout. In some elementary texts, Bézout's theorem refers only to the case of two variables, and asserts that, if two plane algebraic curves of degrees d_1 and d_2 have no component in common, they have d_1d_2 intersection points, counted with their multiplicity, and including points at infinity and points with complex coordinates. In its modern formulation, the theorem states that, if is the number of common points over an algebraically closed field of projective hypersurfaces defined by homogeneous polynomials in indeterminates, then is either infinite, or equals the product of the degrees of the polynomials. Moreover, the finite case occurs almost always. In the case of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algebraic Geometry
Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; the modern approach generalizes this in a few different aspects. The fundamental objects of study in algebraic geometry are algebraic variety, algebraic varieties, which are geometric manifestations of solution set, solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are line (geometry), lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscate of Bernoulli, lemniscates and Cassini ovals. These are plane algebraic curves. A point of the plane lies on an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of points of special interest like singular point of a curve, singular p ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Philosophiæ Naturalis Principia Mathematica
(English: ''The Mathematical Principles of Natural Philosophy''), often referred to as simply the (), is a book by Isaac Newton that expounds Newton's laws of motion and his law of universal gravitation. The ''Principia'' is written in Latin and comprises three volumes, and was authorized, imprimatur, by Samuel Pepys, then-President of the Royal Society on 5 July 1686 and first published in 1687. The is considered one of the most important works in the history of science. The French mathematical physicist Alexis Clairaut assessed it in 1747: "The famous book of ''Mathematical Principles of Natural Philosophy'' marked the epoch of a great revolution in physics. The method followed by its illustrious author Sir Newton ... spread the light of mathematics on a science which up to then had remained in the darkness of conjectures and hypotheses." The French scientist Joseph-Louis Lagrange described it as "the greatest production of the human mind". French polymath Pierre-Simon ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Multi-homogeneous Bézout Theorem
In algebra and algebraic geometry, the multi-homogeneous Bézout theorem is a generalization to multi-homogeneous polynomials of Bézout's theorem, which counts the number of isolated common zeros of a set of homogeneous polynomials. This generalization is due to Igor Shafarevich. Motivation Given a polynomial equation or a system of polynomial equations it is often useful to compute or to bound the number of solutions without computing explicitly the solutions. In the case of a single equation, this problem is solved by the fundamental theorem of algebra, which asserts that the number of complex solutions is bounded by the degree of the polynomial, with equality, if the solutions are counted with their multiplicities. In the case of a system of polynomial equations in unknowns, the problem is solved by Bézout's theorem, which asserts that, if the number of complex solutions is finite, their number is bounded by the product of the degrees of the polynomials. Moreover, if the n ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
General Position
In algebraic geometry and computational geometry, general position is a notion of genericity for a set of points, or other geometric objects. It means the ''general case'' situation, as opposed to some more special or coincidental cases that are possible, which is referred to as special position. Its precise meaning differs in different settings. For example, generically, two lines in the plane intersect in a single point (they are not parallel or coincident). One also says "two generic lines intersect in a point", which is formalized by the notion of a ''generic point''. Similarly, three generic points in the plane are not collinear; if three points are collinear (even stronger, if two coincide), this is a degenerate case. This notion is important in mathematics and its applications, because degenerate cases may require an exceptional treatment; for example, when stating general theorems or giving precise statements thereof, and when writing computer programs (see '' generic ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Projective Space
In mathematics, the concept of a projective space originated from the visual effect of perspective, where parallel lines seem to meet ''at infinity''. A projective space may thus be viewed as the extension of a Euclidean space, or, more generally, an affine space with points at infinity, in such a way that there is one point at infinity of each direction of parallel lines. This definition of a projective space has the disadvantage of not being isotropic, having two different sorts of points, which must be considered separately in proofs. Therefore, other definitions are generally preferred. There are two classes of definitions. In synthetic geometry, ''point'' and ''line'' are primitive entities that are related by the incidence relation "a point is on a line" or "a line passes through a point", which is subject to the axioms of projective geometry. For some such set of axioms, the projective spaces that are defined have been shown to be equivalent to those resulting from the f ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Polynomial Greatest Common Divisor
In algebra, the greatest common divisor (frequently abbreviated as GCD) of two polynomials is a polynomial, of the highest possible degree, that is a factor of both the two original polynomials. This concept is analogous to the greatest common divisor of two integers. In the important case of univariate polynomials over a field the polynomial GCD may be computed, like for the integer GCD, by the Euclidean algorithm using long division. The polynomial GCD is defined only up to the multiplication by an invertible constant. The similarity between the integer GCD and the polynomial GCD allows extending to univariate polynomials all the properties that may be deduced from the Euclidean algorithm and Euclidean division. Moreover, the polynomial GCD has specific properties that make it a fundamental notion in various areas of algebra. Typically, the roots of the GCD of two polynomials are the common roots of the two polynomials, and this provides information on the roots without c ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Field (mathematics)
In mathematics, a field is a set (mathematics), set on which addition, subtraction, multiplication, and division (mathematics), division are defined and behave as the corresponding operations on rational number, rational and real numbers. A field is thus a fundamental algebraic structure which is widely used in algebra, number theory, and many other areas of mathematics. The best known fields are the field of rational numbers, the field of real numbers and the field of complex numbers. Many other fields, such as field of rational functions, fields of rational functions, algebraic function fields, algebraic number fields, and p-adic number, ''p''-adic fields are commonly used and studied in mathematics, particularly in number theory and algebraic geometry. Most cryptographic protocols rely on finite fields, i.e., fields with finitely many element (set), elements. The theory of fields proves that angle trisection and squaring the circle cannot be done with a compass and straighte ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Projective Plane
In mathematics, a projective plane is a geometric structure that extends the concept of a plane (geometry), plane. In the ordinary Euclidean plane, two lines typically intersect at a single point, but there are some pairs of lines (namely, parallel lines) that do not intersect. A projective plane can be thought of as an ordinary plane equipped with additional "points at infinity" where parallel lines intersect. Thus ''any'' two distinct lines in a projective plane intersect at exactly one point. Renaissance artists, in developing the techniques of drawing in Perspective (graphical)#Renaissance, perspective, laid the groundwork for this mathematical topic. The archetypical example is the real projective plane, also known as the extended Euclidean plane. This example, in slightly different guises, is important in algebraic geometry, topology and projective geometry where it may be denoted variously by , RP2, or P2(R), among other notations. There are many other projective planes, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Journal Of Pure And Applied Algebra
The ''Journal of Pure and Applied Algebra'' is a monthly peer-reviewed scientific journal covering that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications. Its founding editors-in-chief were Peter J. Freyd (University of Pennsylvania) and Alex Heller (City University of New York). The current managing editors are Srikanth Iyengar (University of Utah), Charles Weibel (Rutgers University), and Aldo Conca ( Università di Genova). Abstracting and indexing The journal is abstracted and indexed in Current Contents/Physics, Chemical, & Earth Sciences, Mathematical Reviews, PASCAL, Science Citation Index, Zentralblatt MATH, and Scopus. According to the ''Journal Citation Reports'', the journal has a 2016 impact factor The impact factor (IF) or journal impact factor (JIF) of an academic journal is a type of journal ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Nash Functions
In real algebraic geometry, a Nash function on an open semialgebraic subset ''U'' ⊂ R''n'' is an analytic function ''f'': ''U'' → R satisfying a nontrivial polynomial equation ''P''(''x'',''f''(''x'')) = 0 for all ''x'' in ''U'' (A semialgebraic subset of R''n'' is a subset obtained from subsets of the form or , where ''P'' is a polynomial, by taking finite unions, finite intersections and complements). Some examples of Nash functions: *Polynomial and regular rational functions are Nash functions. *x\mapsto \sqrt is Nash on R. *the function which associates to a real symmetric matrix its ''i''-th eigenvalue (in increasing order) is Nash on the open subset of symmetric matrices with no multiple eigenvalue. Nash functions are those functions needed in order to have an implicit function theorem in real algebraic geometry. Nash manifolds Along with Nash functions one defines Nash manifolds, which are semialgebraic analytic submanifolds of some R''n''. A Nash mapping between Na ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bernstein–Kushnirenko Theorem
The Bernstein–Kushnirenko theorem (or Bernstein–Khovanskii–Kushnirenko (BKK) theorem), proven by David Bernstein and in 1975, is a theorem in algebra. It states that the number of non-zero complex solutions of a system of Laurent polynomial equations f_1= \cdots = f_n=0 is equal to the mixed volume of the Newton polytopes of the polynomials f_1, \ldots, f_n, assuming that all non-zero coefficients of f_n are generic. Statement Let A be a finite subset of \Z^n. Consider the subspace L_A of the Laurent polynomial algebra \Complex \left x_1^, \ldots, x_n^ \right /math> consisting of Laurent polynomials whose exponents are in A. That is: :L_A = \left \, \right. where for each \alpha = (a_1, \ldots, a_n) \in \Z^n we have used the shorthand notation x^\alpha to denote the monomial x_1^ \cdots x_n^. Now take n finite subsets A_1, \ldots, A_n of \Z^n , with the corresponding subspaces of Laurent polynomials, L_, \ldots, L_. Consider a generic system of equations from these ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Jean-Pierre Serre
Jean-Pierre Serre (; born 15 September 1926) is a French mathematician who has made contributions to algebraic topology, algebraic geometry and algebraic number theory. He was awarded the Fields Medal in 1954, the Wolf Prize in 2000 and the inaugural Abel Prize in 2003. Biography Personal life Born in Bages, Pyrénées-Orientales, to pharmacist parents, Serre was educated at the Lycée de Nîmes. Then he studied at the École Normale Supérieure in Paris from 1945 to 1948. He was awarded his doctorate from the Sorbonne in 1951. From 1948 to 1954 he held positions at the Centre National de la Recherche Scientifique in Paris. In 1956 he was elected professor at the Collège de France, a position he held until his retirement in 1994. His wife, Professor Josiane Heulot-Serre, was a chemist; she also was the director of the Ecole Normale Supérieure de Jeunes Filles. Their daughter is the former French diplomat, historian and writer Claudine Monteil. The French mathematician D ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |