HOME
*





Byerlee's Law
In rheology, Byerlee's law, also known as Byerlee's friction law concerns the shear stress (τ) required to slide one rock over another. The rocks have macroscopically flat surfaces, but the surfaces have small asperities that make them "rough." For a given experiment and at normal stresses (σn) below about 2000 bars (200 MPa) the shear stress increases approximately linearly with the normal stress (τ = 0.85 σn) and is highly dependent on rock type and the character (roughness) of the surfaces, see Mohr-Coulomb friction law. Byerlee's law states that with increased normal stress the required shear stress continues to increase, but the ''rate'' of increase decreases (τ = 0.5 + 0.6σn), and becomes nearly independent of rock type. The law describes an important property of crustal rock, and can be used to determine when slip along a geological fault takes place. __NOTOC__ See also * Archie's law * Birch's law Birch's law, discovered by the geophysicist Francis Birch, esta ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rheology
Rheology (; ) is the study of the flow of matter, primarily in a fluid ( liquid or gas) state, but also as "soft solids" or solids under conditions in which they respond with plastic flow rather than deforming elastically in response to an applied force. Rheology is a branch of physics, and it is the science that deals with the deformation and flow of materials, both solids and liquids.W. R. Schowalter (1978) Mechanics of Non-Newtonian Fluids Pergamon The term ''rheology'' was coined by Eugene C. Bingham, a professor at Lafayette College, in 1920, from a suggestion by a colleague, Markus Reiner.The Deborah Number
The term was inspired by the of

picture info

Shear Stress
Shear stress, often denoted by (Greek: tau), is the component of stress coplanar with a material cross section. It arises from the shear force, the component of force vector parallel to the material cross section. ''Normal stress'', on the other hand, arises from the force vector component perpendicular to the material cross section on which it acts. General shear stress The formula to calculate average shear stress is force per unit area.: : \tau = , where: : = the shear stress; : = the force applied; : = the cross-sectional area of material with area parallel to the applied force vector. Other forms Wall shear stress Wall shear stress expresses the retarding force (per unit area) from a wall in the layers of a fluid flowing next to the wall. It is defined as: \tau_w:=\mu\left(\frac\right)_ Where \mu is the dynamic viscosity, u the flow velocity and y the distance from the wall. It is used, for example, in the description of arterial blood flow in which case which ther ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Stress (mechanics)
In continuum mechanics, stress is a physical quantity. It is a quantity that describes the magnitude of forces that cause deformation. Stress is defined as ''force per unit area''. When an object is pulled apart by a force it will cause elongation which is also known as deformation, like the stretching of an elastic band, it is called tensile stress. But, when the forces result in the compression of an object, it is called compressive stress. It results when forces like tension or compression act on a body. The greater this force and the smaller the cross-sectional area of the body on which it acts, the greater the stress. Therefore, stress is measured in newton per square meter (N/m2) or pascal (Pa). Stress expresses the internal forces that neighbouring particles of a continuous material exert on each other, while strain is the measure of the deformation of the material. For example, when a solid vertical bar is supporting an overhead weight, each particle in the bar pushe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Crust (geology)
In geology, the crust is the outermost solid shell of a rocky planet, dwarf planet, or natural satellite. It is usually distinguished from the underlying mantle by its chemical makeup; however, in the case of icy satellites, it may be distinguished based on its phase (solid crust vs. liquid mantle). The crusts of Earth, Mercury, Venus, Mars, Io, the Moon and other planetary bodies formed via igneous processes and were later modified by erosion, impact cratering, volcanism, and sedimentation. Most terrestrial planets have fairly uniform crusts. Earth, however, has two distinct types: continental crust and oceanic crust. These two types have different chemical compositions and physical properties and were formed by different geological processes. Types of crust Planetary geologists divide crust into three categories based on how and when it formed. Primary crust / primordial crust This is a planet's "original" crust. It forms from solidification of a magma ocean. Towa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Geological Fault
In geology, a fault is a planar fracture or discontinuity in a volume of rock across which there has been significant displacement as a result of rock-mass movements. Large faults within Earth's crust result from the action of plate tectonic forces, with the largest forming the boundaries between the plates, such as the megathrust faults of subduction zones or transform faults. Energy release associated with rapid movement on active faults is the cause of most earthquakes. Faults may also displace slowly, by aseismic creep. A ''fault plane'' is the plane that represents the fracture surface of a fault. A ''fault trace'' or ''fault line'' is a place where the fault can be seen or mapped on the surface. A fault trace is also the line commonly plotted on geologic maps to represent a fault. A ''fault zone'' is a cluster of parallel faults. However, the term is also used for the zone of crushed rock along a single fault. Prolonged motion along closely spaced faults can blur the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Archie's Law
In petrophysics, Archie's law relates the ''in-situ'' electrical conductivity (C) of a porous rock to its porosity (\phi\,\!) and fluid saturation (S_w) of the pores: :C_t = \frac C_w \phi^m S_w^n Here, \phi\,\! denotes the porosity, C_t the electrical conductivity of the fluid saturated rock, C_w represents the electrical conductivity of the aqueous solution (fluid or liquid phase), S_w is the water saturation, or more generally the fluid saturation, of the pores, m is the cementation exponent of the rock (usually in the range 1.8–2.0 for sandstones), n is the saturation exponent (usually close to 2) and a is the tortuosity factor. Reformulated for the electrical resistivity (R), the inverse of the electrical conductivity (R = \frac), the equation reads :R_t = a R_w \phi^ S_w^ with R_t for the total fluid saturated rock resistivity, and R_w for the resistivity of the fluid itself (w meaning water or an aqueous solution containing dissolved salts with ions bearing elect ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Birch's Law
Birch's law, discovered by the geophysicist Francis Birch, establishes a linear relation between compressional wave velocity and density of rocks and minerals: : v_\mathrm = a( \bar M ) + b \rho where \, \bar M \, is the mean atomic mass in formula units and \, a(x) \, is an empirical function determined by experiment. Example The mean atomic mass of forsterite (Mg2SiO4) is equal to the sum of the atomic masses divided by the number of atoms in the formula: : \bar = \frac = 20.13 ~. Typical oxides and silicates in the mantle have values close to 20, while in the earth's core it is close to 50. Applications Birch's law applies to rocks that are under pressures of a few tens of gigapascals, enough for most cracks to close. It can be used in the discussion of geophysical data. The law is used in forming compositional and mineralogical models of the mantle by using the change in the velocity of the seismic wave and its relationship with a change in density of the material the wa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Geophysics
Geophysics () is a subject of natural science concerned with the physical processes and physical properties of the Earth and its surrounding space environment, and the use of quantitative methods for their analysis. The term ''geophysics'' sometimes refers only to solid earth applications: Earth's shape; its gravitational and magnetic fields; its internal structure and composition; its dynamics and their surface expression in plate tectonics, the generation of magmas, volcanism and rock formation. However, modern geophysics organizations and pure scientists use a broader definition that includes the water cycle including snow and ice; fluid dynamics of the oceans and the atmosphere; electricity and magnetism in the ionosphere and magnetosphere and solar-terrestrial physics; and analogous problems associated with the Moon and other planets. Gutenberg, B., 1929, Lehrbuch der Geophysik. Leipzig. Berlin (Gebruder Borntraeger). Runcorn, S.K, (editor-in-chief), 1967, International ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Rheology
Rheology (; ) is the study of the flow of matter, primarily in a fluid ( liquid or gas) state, but also as "soft solids" or solids under conditions in which they respond with plastic flow rather than deforming elastically in response to an applied force. Rheology is a branch of physics, and it is the science that deals with the deformation and flow of materials, both solids and liquids.W. R. Schowalter (1978) Mechanics of Non-Newtonian Fluids Pergamon The term ''rheology'' was coined by Eugene C. Bingham, a professor at Lafayette College, in 1920, from a suggestion by a colleague, Markus Reiner.The Deborah Number
The term was inspired by the of