HOME
*



picture info

Buffon's Needle
In mathematics, Buffon's needle problem is a question first posed in the 18th century by Georges-Louis Leclerc, Comte de Buffon: :Suppose we have a floor made of Parallel (geometry), parallel strips of wood, each the same width, and we drop a Sewing needle, needle onto the floor. What is the probability that the needle will lie across a line between two strips? Buffon's needle was the earliest problem in geometric probability to be solved; it can be solved using integral geometry. The solution for the sought probability ''p'', in the case where the needle length ''ℓ'' is not greater than the width ''t'' of the strips, is :p=\frac \cdot \frac\ell t. This can be used to design a Monte Carlo method for approximating the number pi, , although that was not the original motivation for de Buffon's question. Solution The problem in more mathematical terms is: Given a needle of length \ell dropped on a plane ruled with parallel lines ''t'' units apart, what is the probability that ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Buffon Needle
In mathematics, Buffon's needle problem is a question first posed in the 18th century by Georges-Louis Leclerc, Comte de Buffon: :Suppose we have a floor made of Parallel (geometry), parallel strips of wood, each the same width, and we drop a Sewing needle, needle onto the floor. What is the probability that the needle will lie across a line between two strips? Buffon's needle was the earliest problem in geometric probability to be solved; it can be solved using integral geometry. The solution for the sought probability ''p'', in the case where the needle length ''ℓ'' is not greater than the width ''t'' of the strips, is :p=\frac \cdot \frac\ell t. This can be used to design a Monte Carlo method for approximating the number pi, , although that was not the original motivation for de Buffon's question. Solution The problem in more mathematical terms is: Given a needle of length \ell dropped on a plane ruled with parallel lines ''t'' units apart, what is the probability that ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Joseph-Émile Barbier
Joseph-Émile Barbier (1839–1889) was a French astronomer and mathematician, known for Barbier's theorem on the perimeter of curves of constant width. Barbier was born on 18 March 1839 in Saint-Hilaire-Cottes, Pas-de-Calais, in the north of France. He studied at the College of Saint-Omer, also in Pas-de-Calais, and then at the Lycée Henri-IV in Paris. He entered the École Normale Supérieure in 1857, and finished his studies there in 1860, the same year in which he published the paper containing his theorem on constant-width curves. In this paper he also presented a solution to Buffon's needle problem, known as Buffon's noodle, that avoided the use of integrals. He began teaching at a lycée in Nice, but it was not a success, and he soon moved to a position as an assistant astronomer at the Paris Observatory. He left there in 1865, and in 1880 Joseph Louis François Bertrand found him in the Charenton asylum. Bertrand arranged for Barbier's support and encouraged him to ret ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Applied Probability
Applied probability is the application of probability theory to statistical problems and other scientific and engineering domains. Scope Much research involving probability is done under the auspices of applied probability. However, while such research is motivated (to some degree) by applied problems, it is usually the mathematical aspects of the problems that are of most interest to researchers (as is typical of applied mathematics in general). Applied probabilists are particularly concerned with the application of stochastic processes, and probability more generally, to the natural, applied and social sciences, including biology, physics (including astronomy), chemistry, medicine, computer science and information technology, and economics. Another area of interest is in engineering: particularly in areas of uncertainty, risk management, probabilistic design, and Quality assurance. See also *Areas of application: **Ruin theory **Statistical physics **Stoichiometry and modelli ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Brady Haran
Brady John Haran (born 18 June 1976) is an Australian-British independent filmmaker and video journalist who produces educational videos and documentary films for his YouTube channels, the most notable being ''Periodic Videos'' and ''Numberphile''. Haran is also the co-host of the'' Hello Internet'' podcast along with fellow educational YouTuber CGP Grey. On 22 August 2017, Haran launched his second podcast, called ''The Unmade Podcast'', and on 11 November 2018, he launched his third podcast, '' The Numberphile Podcast'', based on his mathematics-centered channel of the same name. Reporter and filmmaker Brady Haran studied journalism for a year before being hired by ''The Adelaide Advertiser''. In 2002, he moved from Australia to Nottingham, United Kingdom. In Nottingham, he worked for the BBC, began to work with film, and reported for ''East Midlands Today'', BBC News Online and BBC radio stations. In 2007, Haran worked as a filmmaker-in-residence for Nottingham Science ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Numberphile
''Numberphile'' is an educational YouTube channel featuring videos that explore topics from a variety of fields of mathematics. In the early days of the channel, each video focused on a specific number, but the channel has since expanded its scope, featuring videos on more advanced mathematical concepts such as Fermat's Last Theorem, the Riemann hypothesis and Kruskal's tree theorem. The videos are produced by Brady Haran, a former BBC video journalist and creator of Periodic Videos, Sixty Symbols, and several other YouTube channels. Videos on the channel feature several university professors, maths communicators and famous mathematicians. In 2018, Haran released a spin-off audio podcast titled ''The Numberphile Podcast''. YouTube channel The ''Numberphile'' YouTube channel was started on 15 September 2011. Most videos consist of Haran interviewing an expert on a number, mathematical theorem or other mathematical concept. The expert usually draws out their explanation on a la ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

R (programming Language)
R is a programming language for statistical computing and graphics supported by the R Core Team and the R Foundation for Statistical Computing. Created by statisticians Ross Ihaka and Robert Gentleman, R is used among data miners, bioinformaticians and statisticians for data analysis and developing statistical software. Users have created packages to augment the functions of the R language. According to user surveys and studies of scholarly literature databases, R is one of the most commonly used programming languages used in data mining. R ranks 12th in the TIOBE index, a measure of programming language popularity, in which the language peaked in 8th place in August 2020. The official R software environment is an open-source free software environment within the GNU package, available under the GNU General Public License. It is written primarily in C, Fortran, and R itself (partially self-hosting). Precompiled executables are provided for various operating systems. R ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Slideshare
SlideShare is an American hosting service, now owned by Scribd, for professional content including presentations, infographics, documents, and videos. Users can upload files privately or publicly in PowerPoint, Word, PDF, or OpenDocument format. Content can then be viewed on the site itself, on mobile devices or embedded on other sites. SlideShare also provides users the ability to rate, comment on, and share the uploaded content. Launched on October 4, 2006, the service positioned itself to be similar to YouTube, but for presentations. The company was acquired by LinkedIn in 2012, and then by Scribd in 2020. In 2018, it was estimated that the website gets an estimated 80 million unique visitors a month. SlideShare's biggest competitors include Zoho.com, Issuu and edocr. History SlideShare was officially launched on October 4, 2006. Rashmi Sinha, the CEO and co-founder of SlideShare was named amongst the world's Top 10 Women Influencers in Web 2.0 by FastCompany. Jonathan Bo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Cut-the-knot
Alexander Bogomolny (January 4, 1948 July 7, 2018) was a Soviet-born Israeli-American mathematician. He was Professor Emeritus of Mathematics at the University of Iowa, and formerly research fellow at the Moscow Institute of Electronics and Mathematics, senior instructor at Hebrew University and software consultant at Ben Gurion University. He wrote extensively about arithmetic, probability, algebra, geometry, trigonometry and mathematical games. He was known for his contribution to heuristics and mathematics education, creating and maintaining the mathematically themed educational website ''Cut-the-Knot'' for the Mathematical Association of America (MAA) Online. He was a pioneer in mathematical education on the internet, having started ''Cut-the-Knot'' in October 1996.Interview with Alexander ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bertrand Paradox (probability)
The Bertrand paradox is a problem within the classical interpretation of probability theory. Joseph Bertrand introduced it in his work ''Calcul des probabilités'' (1889), as an example to show that the principle of indifference may not produce definite, well-defined results for probabilities if it is applied uncritically when the domain of possibilities is infinite. Bertrand's formulation of the problem The Bertrand paradox is generally presented as follows: Consider an equilateral triangle inscribed in a circle. Suppose a chord of the circle is chosen at random. What is the probability that the chord is longer than a side of the triangle? Bertrand gave three arguments (each using the principle of indifference), all apparently valid, yet yielding different results: # The "random endpoints" method: Choose two random points on the circumference of the circle and draw the chord joining them. To calculate the probability in question imagine the triangle rotated so its vertex coi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Confirmation Bias
Confirmation bias is the tendency to search for, interpret, favor, and recall information in a way that confirms or supports one's prior beliefs or values. People display this bias when they select information that supports their views, ignoring contrary information, or when they interpret ambiguous evidence as supporting their existing attitudes. The effect is strongest for desired outcomes, for emotionally charged issues, and for deeply entrenched beliefs. Confirmation bias cannot be eliminated, but it can be managed, for example, by education and training in critical thinking skills. Biased search for information, biased interpretation of this information, and biased memory recall, have been invoked to explain four specific effects: # ''attitude polarization'' (when a disagreement becomes more extreme even though the different parties are exposed to the same evidence) # ''belief perseverance'' (when beliefs persist after the evidence for them is shown to be false) # the ''irr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Approximations Of π
Approximations for the mathematical constant pi () in the history of mathematics reached an accuracy within 0.04% of the true value before the beginning of the Common Era. In Chinese mathematics, this was improved to approximations correct to what corresponds to about seven decimal digits by the 5th century. Further progress was not made until the 15th century (through the efforts of Jamshīd al-Kāshī). Early modern mathematicians reached an accuracy of 35 digits by the beginning of the 17th century (Ludolph van Ceulen), and 126 digits by the 19th century (Jurij Vega), surpassing the accuracy required for any conceivable application outside of pure mathematics. The record of manual approximation of is held by William Shanks, who calculated 527 digits correctly in 1853. Since the middle of the 20th century, the approximation of has been the task of electronic digital computers (for a comprehensive account, see Chronology of computation of ). On June 8, 2022, the current r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Buffon Needle Experiment Compressed
Buffon may refer to: *Georges-Louis Leclerc, Comte de Buffon (1707–1788), French naturalist *Gianluigi Buffon (born 1978), Italian football goalkeeper *Lorenzo Buffon (born 1929), former Italian football goalkeeper, cousin of the grandfather of Gianluigi Buffon *Buffon, Côte-d'Or, a town in the French département of Côte-d'Or *Buffon (crater), a lunar crater * Cape Buffon, a headland in South Australia See also * Bouffant * Buffoon A jester, court jester, fool or joker was a member of the household of a nobleman or a monarch employed to entertain guests during the medieval and Renaissance eras. Jesters were also itinerant performers who entertained common folk at fairs and ... {{disambig, geo, surname Surnames of Italian origin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]