Brouwer–Haemers Graph
In the mathematical field of graph theory, the Brouwer–Haemers graph is a 20- regular undirected graph with 81 vertices and 810 edges. It is a strongly regular graph, a distance-transitive graph, and a Ramanujan graph. Although its construction is folklore, it was named after Andries Brouwer and Willem H. Haemers, who proved its uniqueness as a strongly regular graph. Construction The Brouwer–Haemers graph has several related algebraic constructions. One of the simplest is as a degree-4 generalized Paley graph: it can be defined by making a vertex for each element in the finite field GF(81) and an edge for every two elements that differ by a fourth power. Properties The Brouwer–Haemers graph is the unique strongly regular graph with parameters (81, 20, 1, 6). This means that it has 81 vertices, 20 edges per vertex, 1 triangle per edge, and 6 length-two paths connecting each non-adjacent pair of distinct vertices. As a strongly regular graph with t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Brouwer Haemers Graph
Brouwer (also Brouwers and de Brouwer) is a Dutch and Flemish surname. The word ''brouwer'' means 'brewer'. Brouwer * Adriaen Brouwer (1605–1638), Flemish painter * Alexander Brouwer (b. 1989), Dutch beach volleyball player * Andries Brouwer (b. 1953), Dutch mathematician and computer programmer **Brouwer–Haemers graph * Bertha "Puck" Brouwer (1930–2006), Dutch sprinter * Carolijn Brouwer (b. 1973), Dutch competitive sailor * Christoph Brouwer (1559–1617), Dutch Catholic ecclesiastical historian * Cornelis Brouwer (–1681), Dutch Golden Age painter * Cornelis Brouwer (1900–1952), Dutch long-distance runner * Dirk Brouwer (1899–1941), Dutch architect and resistance member * Dirk Brouwer (1902–1966), Dutch-American astronomer ** Brouwer Award, Dirk Brouwer Award, 1746 Brouwer asteroid * Emanuel Brouwer (1881–1954), Dutch gymnast * George Brouwer, Australian lawyer, Ombudsman for Victoria * Gijs Brouwer (b. 1996), Dutch tennis player * Harm Brouwer (b. 1957), ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fourth Power
In arithmetic and algebra, the fourth power of a number ''n'' is the result of multiplying four instances of ''n'' together. So: :''n''4 = ''n'' × ''n'' × ''n'' × ''n'' Fourth powers are also formed by multiplying a number by its cube. Furthermore, they are squares of squares. Some people refer to ''n''4 as n '' tesseracted'', '' hypercubed'', '' zenzizenzic'', '' biquadrate'' or ''supercubed'' instead of “to the power of 4”. The sequence of fourth powers of integers, known as biquadrates or tesseractic numbers, is: :0, 1, 16, 81, 256, 625, 1296, 2401, 4096, 6561, 10000, 14641, 20736, 28561, 38416, 50625, 65536, 83521, 104976, 130321, 160000, 194481, 234256, 279841, 331776, 390625, 456976, 531441, 614656, 707281, 810000, ... . Properties The last digit of a fourth power in decimal can only be 0, 1, 5, or 6. In hexadecimal the last nonzero digit of a fourth power is always 1.An odd fourth power is the square of an odd square number. All odd squares are congruent to 1 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Notices Of The American Mathematical Society
''Notices of the American Mathematical Society'' is the membership journal of the American Mathematical Society (AMS), published monthly except for the combined June/July issue. The first volume was published in 1953. Each issue of the magazine since January 1995 is available in its entirety on the journal web site. Articles are peer-reviewed by an editorial board of mathematical experts. Beginning with the January 2025 issue, the editor-in-chief is Mark C. Wilson, succeeding past editor Erica Flapan. The cover regularly features mathematical visualizations. The ''Notices'' is self-described to be the world's most widely read mathematical journal. As the membership journal of the American Mathematical Society, the ''Notices'' is sent to the approximately 30,000 AMS members worldwide, one-third of whom reside outside the United States. By publishing high-level exposition, the ''Notices'' provides opportunities for mathematicians to find out what is going on in the field. Each is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Journal Of Combinatorial Theory
The ''Journal of Combinatorial Theory'', Series A and Series B, are mathematical journals specializing in combinatorics and related areas. They are published by Elsevier. ''Series A'' is concerned primarily with structures, designs, and applications of combinatorics. ''Series B'' is concerned primarily with graph and matroid theory. The two series are two of the leading journals in the field and are widely known as ''JCTA'' and ''JCTB''. The journal was founded in 1966 by Frank Harary and Gian-Carlo Rota.They are acknowledged on the journals' title pages and Web sites. SeEditorial board of JCTA Editorial board of JCTB Originally there was only one journal, which was split into two parts in 1971 as the field grew rapidly. In 2020, most of the editorial board of ''JCTA'' resigned to form a new, [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Graph Coloring
In graph theory, graph coloring is a methodic assignment of labels traditionally called "colors" to elements of a Graph (discrete mathematics), graph. The assignment is subject to certain constraints, such as that no two adjacent elements have the same color. Graph coloring is a special case of graph labeling. In its simplest form, it is a way of coloring the Vertex (graph theory), vertices of a graph such that no two adjacent vertices are of the same color; this is called a vertex coloring. Similarly, an ''edge coloring'' assigns a color to each Edge (graph theory), edges so that no two adjacent edges are of the same color, and a face coloring of a planar graph assigns a color to each Face (graph theory), face (or region) so that no two faces that share a boundary have the same color. Vertex coloring is often used to introduce graph coloring problems, since other coloring problems can be transformed into a vertex coloring instance. For example, an edge coloring of a graph is just ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Clique (graph Theory)
In graph theory, a clique ( or ) is a subset of vertices of an undirected graph such that every two distinct vertices in the clique are adjacent. That is, a clique of a graph G is an induced subgraph of G that is complete. Cliques are one of the basic concepts of graph theory and are used in many other mathematical problems and constructions on graphs. Cliques have also been studied in computer science: the task of finding whether there is a clique of a given size in a graph (the clique problem) is NP-complete, but despite this hardness result, many algorithms for finding cliques have been studied. Although the study of complete subgraphs goes back at least to the graph-theoretic reformulation of Ramsey theory by , the term ''clique'' comes from , who used complete subgraphs in social networks to model cliques of people; that is, groups of people all of whom know each other. Cliques have many other applications in the sciences and particularly in bioinformatics. Definiti ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sudoku
Sudoku (; ; originally called Number Place) is a logic puzzle, logic-based, combinatorics, combinatorial number-placement puzzle. In classic Sudoku, the objective is to fill a 9 × 9 grid with digits so that each column, each row, and each of the nine 3 × 3 subgrids that compose the grid (also called "boxes", "blocks", or "regions") contains all of the digits from 1 to 9. The puzzle setter provides a partially completed grid, which for a well-posed problem, well-posed puzzle has a single solution. French newspapers featured similar puzzles in the 19th century, and the modern form of the puzzle first appeared in 1979 puzzle books by Dell Magazines under the name Number Place. However, the puzzle type only began to gain widespread popularity in 1986 when it was published by the Japanese puzzle company Nikoli (publisher), Nikoli under the name Sudoku, meaning "single number". In newspapers outside of Japan, it first appeared in ''The Conway Daily Sun'' (New Hamp ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sudoku Graph
In the mathematics of Sudoku, the Sudoku graph is an undirected graph whose vertices represent the cells of a (blank) Sudoku puzzle and whose edges represent pairs of cells that belong to the same row, column, or block of the puzzle. The problem of solving a Sudoku puzzle can be represented as precoloring extension on this graph. It is an integral Cayley graph. Basic properties and examples On a Sudoku board of size n^2\times n^2, the Sudoku graph has n^4 vertices, each with exactly 3n^2-2n-1 neighbors. Therefore, it is a regular graph. The total number of edges is n^4(3n^2-2n-1)/2. For instance, the graph shown in the figure above, for a 4\times 4 board, has 16 vertices and 56 edges, and is 7-regular. For the most common form of Sudoku, on a 9\times 9 board, the Sudoku graph is a 20-regular graph with 81 vertices and 810 edges. The second figure shows how to count the neighbors of each cell in a 9\times 9 board. Puzzle solutions and graph coloring Each row, column, or block ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Games Graph
In graph theory, the Games graph is the largest known locally linear strongly regular graph. Its parameters as a strongly regular graph are (729,112,1,20). This means that it has 729 vertices, and 40824 edges (112 per vertex). Each edge is in a unique triangle (it is a locally linear graph) and each non-adjacent pair of vertices have exactly 20 shared neighbors. It is named after Richard A. Games, who suggested its construction in an unpublished communication and wrote about related constructions. Construction The construction of this graph involves the 56-point cap set in PG(5,3). This is a subset of points with no three in line in the five-dimensional projective geometry over a three-element field, and is unique up to symmetry. The six-dimensional projective geometry, PG(6,3), can be partitioned into a six-dimensional affine space AG(6,3) and a copy of PG(5,3), which forms the set of points at infinity with respect to the affine space. The Games graph has as its vertices the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Rook's Graph
In graph theory, a rook's graph is an undirected graph that represents all legal moves of the rook chess piece on a chessboard. Each vertex of a rook's graph represents a square on a chessboard, and there is an edge between any two squares sharing a row (rank) or column (file), the squares that a rook can move between. These graphs can be constructed for chessboards of any rectangular shape. Although rook's graphs have only minor significance in chess lore, they are more important in the abstract mathematics of graphs through their alternative constructions: rook's graphs are the Cartesian product of two complete graphs, and are the line graphs of complete bipartite graphs. The square rook's graphs constitute the two-dimensional Hamming graphs. Rook's graphs are highly symmetric, having symmetries taking every vertex to every other vertex. In rook's graphs defined from square chessboards, more strongly, every two edges are symmetric, and every pair of vertices is symmetric to ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Latin Square
Latin ( or ) is a classical language belonging to the Italic branch of the Indo-European languages. Latin was originally spoken by the Latins in Latium (now known as Lazio), the lower Tiber area around Rome, Italy. Through the expansion of the Roman Republic, it became the dominant language in the Italian Peninsula and subsequently throughout the Roman Empire. It has greatly influenced many languages, including English, having contributed many words to the English lexicon, particularly after the Christianization of the Anglo-Saxons and the Norman Conquest. Latin roots appear frequently in the technical vocabulary used by fields such as theology, the sciences, medicine, and law. By the late Roman Republic, Old Latin had evolved into standardized Classical Latin. Vulgar Latin refers to the less prestigious colloquial registers, attested in inscriptions and some literary works such as those of the comic playwrights Plautus and Terence and the author Petronius. Whil ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ruzsa–Szemerédi Problem
In combinatorial mathematics and extremal graph theory, the Ruzsa–Szemerédi problem or (6,3)-problem asks for the maximum number of edges in a graph in which every edge belongs to a unique triangle. Equivalently it asks for the maximum number of edges in a balanced bipartite graph whose edges can be partitioned into a linear number of induced matchings, or the maximum number of triples one can choose from n points so that every six points contain at most two triples. The problem is named after Imre Z. Ruzsa and Endre Szemerédi, who first proved that its answer is smaller than n^2 by a slowly-growing (but still unknown) factor. Equivalence between formulations The following questions all have answers that are asymptotically equivalent: they differ by, at most, constant factors from each other. *What is the maximum possible number of edges in a graph with n vertices in which every edge belongs to a unique triangle? The graphs with this property are called locally linear graphs ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |