HOME
*





Brier Score
The Brier Score is a Scoring rule#StrictlyProperScoringRules, ''strictly proper score function'' or ''strictly proper scoring rule'' that measures the accuracy of probabilistic classification, probabilistic predictions. For unidimensional predictions, it is strictly equivalent to the mean squared error as applied to predicted probabilities. The Brier score is applicable to tasks in which predictions must assign probabilities to a set of mutually exclusive discrete outcomes or classes. The set of possible outcomes can be either binary or categorical in nature, and the probabilities assigned to this set of outcomes must sum to one (where each individual probability is in the range of 0 to 1). It was proposed by Glenn W. Brier in 1950. The Brier score can be thought of as a Loss function, cost function. More precisely, across all items i\in in a set of ''N'' predictions, the Brier score measures the mean squared difference between: * The predicted probability assigned to the possible ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Forecast Skill
In the fields of forecasting and prediction, forecast skill or prediction skill is any measure of the accuracy and/or degree of association of prediction to an observation or estimate of the actual value of what is being predicted (formally, the predictand); it may be quantified as a skill score. In meteorology, more specifically in weather forecasting, skill measures the superiority of a forecast over a simple historical baseline of past observations. The same forecast methodology can result in different skill scores at different places, or even in the same place for different seasons (e.g., spring weather might be driven by erratic local conditions, whereas winter cold snaps might correlate with observable polar winds). Weather forecast skill is often presented in the form of seasonal geographical maps. Forecast skill for single-value forecasts (i.e., time series of a scalar quantity) is commonly represented in terms of metrics such as correlation, root mean squared error, mea ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Skill Score
In the fields of forecasting and prediction, forecast skill or prediction skill is any measure of the accuracy and/or degree of association of prediction to an observation or estimate of the actual value of what is being predicted (formally, the predictand); it may be quantified as a skill score. In meteorology, more specifically in weather forecasting, skill measures the superiority of a forecast over a simple historical baseline of past observations. The same forecast methodology can result in different skill scores at different places, or even in the same place for different seasons (e.g., spring weather might be driven by erratic local conditions, whereas winter cold snaps might correlate with observable polar winds). Weather forecast skill is often presented in the form of seasonal geographical maps. Forecast skill for single-value forecasts (i.e., time series of a scalar quantity) is commonly represented in terms of metrics such as correlation, root mean squared error, mean ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Scoring Rule
In decision theory, a scoring rule provides a summary measure for the evaluation of probabilistic predictions or forecasts. It is applicable to tasks in which predictions assign probabilities to events, i.e. one issues a probability distribution F as prediction. This includes probabilistic classification of a set of mutually exclusive outcomes or classes. On the other side, a scoring function provides a summary measure for the evaluation of point predictions, i.e. one predicts a property or functional T(F), like the expectation or the median. Scoring rules and scoring functions can be thought of as "cost function" or " loss function". They are evaluated as empirical mean of a given sample, simply called score. Scores of different predictions or models can then be compared to conclude which model is best. If a cost is levied in proportion to a proper scoring rule, the minimal expected cost corresponds to reporting the true set of probabilities. Proper scoring rules are used i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Probabilistic Classification
In machine learning, a probabilistic classifier is a classifier that is able to predict, given an observation of an input, a probability distribution over a set of classes, rather than only outputting the most likely class that the observation should belong to. Probabilistic classifiers provide classification that can be useful in its own right or when combining classifiers into ensembles. Types of classification Formally, an "ordinary" classifier is some rule, or function, that assigns to a sample a class label : :\hat = f(x) The samples come from some set (e.g., the set of all documents, or the set of all images), while the class labels form a finite set defined prior to training. Probabilistic classifiers generalize this notion of classifiers: instead of functions, they are conditional distributions \Pr(Y \vert X), meaning that for a given x \in X, they assign probabilities to all y \in Y (and these probabilities sum to one). "Hard" classification can then be done using ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mean Squared Error
In statistics, the mean squared error (MSE) or mean squared deviation (MSD) of an estimator (of a procedure for estimating an unobserved quantity) measures the average of the squares of the errors—that is, the average squared difference between the estimated values and the actual value. MSE is a risk function, corresponding to the expected value of the squared error loss. The fact that MSE is almost always strictly positive (and not zero) is because of randomness or because the estimator does not account for information that could produce a more accurate estimate. In machine learning, specifically empirical risk minimization, MSE may refer to the ''empirical'' risk (the average loss on an observed data set), as an estimate of the true MSE (the true risk: the average loss on the actual population distribution). The MSE is a measure of the quality of an estimator. As it is derived from the square of Euclidean distance, it is always a positive value that decreases as the error a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Mutually Exclusive
In logic and probability theory, two events (or propositions) are mutually exclusive or disjoint if they cannot both occur at the same time. A clear example is the set of outcomes of a single coin toss, which can result in either heads or tails, but not both. In the coin-tossing example, both outcomes are, in theory, collectively exhaustive, which means that at least one of the outcomes must happen, so these two possibilities together exhaust all the possibilities. However, not all mutually exclusive events are collectively exhaustive. For example, the outcomes 1 and 4 of a single roll of a six-sided die are mutually exclusive (both cannot happen at the same time) but not collectively exhaustive (there are other possible outcomes; 2,3,5,6). Logic In logic, two mutually exclusive propositions are propositions that logically cannot be true in the same sense at the same time. To say that more than two propositions are mutually exclusive, depending on the context, means that one ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Loss Function
In mathematical optimization and decision theory, a loss function or cost function (sometimes also called an error function) is a function that maps an event or values of one or more variables onto a real number intuitively representing some "cost" associated with the event. An optimization problem seeks to minimize a loss function. An objective function is either a loss function or its opposite (in specific domains, variously called a reward function, a profit function, a utility function, a fitness function, etc.), in which case it is to be maximized. The loss function could include terms from several levels of the hierarchy. In statistics, typically a loss function is used for parameter estimation, and the event in question is some function of the difference between estimated and true values for an instance of data. The concept, as old as Laplace, was reintroduced in statistics by Abraham Wald in the middle of the 20th century. In the context of economics, for example, this i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

English Language
English is a West Germanic language of the Indo-European language family, with its earliest forms spoken by the inhabitants of early medieval England. It is named after the Angles, one of the ancient Germanic peoples that migrated to the island of Great Britain. Existing on a dialect continuum with Scots, and then closest related to the Low Saxon and Frisian languages, English is genealogically West Germanic. However, its vocabulary is also distinctively influenced by dialects of France (about 29% of Modern English words) and Latin (also about 29%), plus some grammar and a small amount of core vocabulary influenced by Old Norse (a North Germanic language). Speakers of English are called Anglophones. The earliest forms of English, collectively known as Old English, evolved from a group of West Germanic (Ingvaeonic) dialects brought to Great Britain by Anglo-Saxon settlers in the 5th century and further mutated by Norse-speaking Viking settlers starting in the 8th and 9th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Calibration (statistics)
There are two main uses of the term calibration in statistics that denote special types of statistical inference problems. "Calibration" can mean :*a reverse process to regression, where instead of a future dependent variable being predicted from known explanatory variables, a known observation of the dependent variables is used to predict a corresponding explanatory variable; :*procedures in statistical classification to determine class membership probabilities which assess the uncertainty of a given new observation belonging to each of the already established classes. In addition, "calibration" is used in statistics with the usual general meaning of calibration. For example, model calibration can be also used to refer to Bayesian inference about the value of a model's parameters, given some data set, or more generally to any type of fitting of a statistical model. As Philip Dawid puts it, "a forecaster is ''well calibrated'' if, for example, of those events to which he assign ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Receiver Operating Characteristic
A receiver operating characteristic curve, or ROC curve, is a graphical plot that illustrates the diagnostic ability of a binary classifier system as its discrimination threshold is varied. The method was originally developed for operators of military radar receivers starting in 1941, which led to its name. The ROC curve is created by plotting the true positive rate (TPR) against the false positive rate (FPR) at various threshold settings. The true-positive rate is also known as sensitivity, recall or ''probability of detection''. The false-positive rate is also known as ''probability of false alarm'' and can be calculated as (1 − specificity). The ROC can also be thought of as a plot of the power as a function of the Type I Error of the decision rule (when the performance is calculated from just a sample of the population, it can be thought of as estimators of these quantities). The ROC curve is thus the sensitivity or recall as a function of fall-out. In general, if the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Coefficient Of Determination
In statistics, the coefficient of determination, denoted ''R''2 or ''r''2 and pronounced "R squared", is the proportion of the variation in the dependent variable that is predictable from the independent variable(s). It is a statistic used in the context of statistical models whose main purpose is either the prediction of future outcomes or the testing of hypotheses, on the basis of other related information. It provides a measure of how well observed outcomes are replicated by the model, based on the proportion of total variation of outcomes explained by the model. There are several definitions of ''R''2 that are only sometimes equivalent. One class of such cases includes that of simple linear regression where ''r''2 is used instead of ''R''2. When only an intercept is included, then ''r''2 is simply the square of the sample correlation coefficient (i.e., ''r'') between the observed outcomes and the observed predictor values. If additional regressors are included, ''R''2 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]