HOME
*





Bousfield Class
In algebraic topology, the Bousfield class of, say, a spectrum ''X'' is the set of all (say) spectra ''Y'' whose smash product with ''X'' is zero: X \otimes Y = 0. Two objects are Bousfield equivalent if their Bousfield classes are the same. The notion applies to module spectra and in that case one usually qualifies a ring spectrum over which the smash product is taken. See also *Bousfield localization In category theory, a branch of mathematics, a (left) Bousfield localization of a model category replaces the model structure with another model structure with the same cofibrations but with more weak equivalences. Bousfield localization is named ... External linksNcatlab.org References {{topology-stub Topology ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Spectrum (topology)
In algebraic topology, a branch of mathematics, a spectrum is an object representable functor, representing a Cohomology#Generalized cohomology theories, generalized cohomology theory. Every such cohomology theory is representable, as follows from Brown's representability theorem. This means that, given a cohomology theory\mathcal^*:\text^ \to \text,there exist spaces E^k such that evaluating the cohomology theory in degree k on a space X is equivalent to computing the homotopy classes of maps to the space E^k, that is\mathcal^k(X) \cong \left[X, E^k\right].Note there are several different category (mathematics), categories of spectra leading to many technical difficulties, but they all determine the same homotopy category, known as the stable homotopy category. This is one of the key points for introducing spectra because they form a natural home for stable homotopy theory. The definition of a spectrum There are many variations of the definition: in general, a ''spectrum'' is any s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Smash Product
In topology, a branch of mathematics, the smash product of two pointed spaces (i.e. topological spaces with distinguished basepoints) (''X,'' ''x''0) and (''Y'', ''y''0) is the quotient of the product space ''X'' Ã— ''Y'' under the identifications (''x'', ''y''0) âˆ¼ (''x''0, ''y'') for all ''x'' in ''X'' and ''y'' in ''Y''. The smash product is itself a pointed space, with basepoint being the equivalence class of (''x''0, ''y''0). The smash product is usually denoted ''X'' âˆ§ ''Y'' or ''X'' â¨³ ''Y''. The smash product depends on the choice of basepoints (unless both ''X'' and ''Y'' are homogeneous). One can think of ''X'' and ''Y'' as sitting inside ''X'' Ã— ''Y'' as the subspaces ''X'' × and × ''Y''. These subspaces intersect at a single point: (''x''0, ''y''0), the basepoint of ''X'' Ã— ''Y''. So the union of these subspaces can be identified with the wedge sum ''X'' â ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Module Spectrum
In algebra, a module spectrum is a spectrum (topology), spectrum with an action of a ring spectrum; it generalizes a module (mathematics), module in abstract algebra. The ∞-category of (say right) module spectra is stable ∞-category, stable; hence, it can be considered as either analog or generalization of the derived category of modules over a ring. K-theory Lurie defines the K-theory of a ring spectrum ''R'' to be the K-theory of the ∞-category of perfect modules over ''R'' (a perfect module being defined as a compact object in the ∞-category of module spectra.) See also *G-spectrum References *J. LurieLecture 19: Algebraic K-theory of Ring Spectra
{{algebra-stub Homotopy theory ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bousfield Localization
In category theory, a branch of mathematics, a (left) Bousfield localization of a model category replaces the model structure with another model structure with the same cofibrations but with more weak equivalences. Bousfield localization is named after Aldridge Bousfield, who first introduced this technique in the context of localization of topological spaces and spectra. Model category structure of the Bousfield localization Given a class ''C'' of morphisms in a model category ''M'' the left Bousfield localization is a new model structure on the same category as before. Its equivalences, cofibrations and fibrations, respectively, are * the ''C''-local equivalences * the original cofibrations of ''M'' and (necessarily, since cofibrations and weak equivalences determine the fibrations) * the maps having the right lifting property with respect to the cofibrations in ''M'' which are also ''C''-local equivalences. In this definition, a ''C''-local equivalence is a map f\colon X \t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]