Boson Star
An exotic star is a hypothetical compact star composed of exotic matter (something not made of electrons, protons, neutrons or muons), and balanced against gravitational collapse by degeneracy pressure or other quantum properties. Exotic stars include quark stars (composed of quarks) and perhaps strange stars (composed of strange quark matter, a condensate of up, down and strange quarks), as well as speculative s (composed of preons, which are hypothetical particles and "building blocks" of quarks, should quarks be decomposable into component sub-particles). Of the various types of exotic star proposed, the most well evidenced and understood is the quark star. Exotic stars are largely theoretical – partly because it is difficult to test in detail how such forms of matter may behave, and partly because prior to the fledgling technology of gravitational-wave astronomy, there was no satisfactory means of detecting cosmic objects that do not radiate electromagnetically or through k ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Compact Star
In astronomy, the term compact star (or compact object) refers collectively to white dwarfs, neutron stars, and black holes. It would grow to include exotic stars if such hypothetical, dense bodies are confirmed to exist. All compact objects have a high mass relative to their radius, giving them a very high density, compared to ordinary atomic matter. Compact stars are often the endpoints of stellar evolution and, in this respect, are also called stellar remnants. The state and type of a stellar remnant depends primarily on the mass of the star that it formed from. The ambiguous term ''compact star'' is often used when the exact nature of the star is not known, but evidence suggests that it has a very small radius compared to ordinary stars. A compact star that is not a black hole may be called a degenerate star. In June 2020, astronomers reported narrowing down the source of Fast Radio Bursts (FRBs), which may now plausibly include "compact-object mergers and magnetars arising ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quark
A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei. All commonly observable matter is composed of up quarks, down quarks and electrons. Owing to a phenomenon known as ''color confinement'', quarks are never found in isolation; they can be found only within hadrons, which include baryons (such as protons and neutrons) and mesons, or in quark–gluon plasmas. There is also the theoretical possibility of more exotic phases of quark matter. For this reason, much of what is known about quarks has been drawn from observations of hadrons. Quarks have various intrinsic properties, including electric charge, mass, color charge, and spin. They are the only elementary particles in the Standard Model of particle physics to experience all four fundamental interactions, also known as ''fundamental forces'' (electro ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
New Scientist
''New Scientist'' is a magazine covering all aspects of science and technology. Based in London, it publishes weekly English-language editions in the United Kingdom, the United States and Australia. An editorially separate organisation publishes a monthly Dutch-language edition. First published on 22 November 1956, ''New Scientist'' has been available in online form since 1996. Sold in retail outlets (paper edition) and on subscription (paper and/or online), the magazine covers news, features, reviews and commentary on science, technology and their implications. ''New Scientist'' also publishes speculative articles, ranging from the technical to the philosophical. ''New Scientist'' was acquired by Daily Mail and General Trust (DMGT) in March 2021. History Ownership The magazine was founded in 1956 by Tom Margerison, Max Raison and Nicholas Harrison as ''The New Scientist'', with Issue 1 on 22 November 1956, priced at one shilling (a twentieth of a pound in pre-decimal UK cu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Apple
An apple is an edible fruit produced by an apple tree (''Malus domestica''). Apple fruit tree, trees are agriculture, cultivated worldwide and are the most widely grown species in the genus ''Malus''. The tree originated in Central Asia, where its wild ancestor, ''Malus sieversii'', is still found today. Apples have been grown for thousands of years in Asia and Europe and were brought to North America by European colonization of the Americas, European colonists. Apples have Religion, religious and mythology, mythological significance in many cultures, including Norse mythology, Norse, Greek mythology, Greek, and Christianity in Europe, European Christian tradition. Apples grown from seed tend to be very different from those of their parents, and the resultant fruit frequently lacks desired characteristics. Generally, apple cultivars are propagated by clonal grafting onto rootstocks. Apple trees grown without rootstocks tend to be larger and much slower to fruit after plantin ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Electroweak Force
In particle physics, the electroweak interaction or electroweak force is the unified description of two of the four known fundamental interactions of nature: electromagnetism and the weak interaction. Although these two forces appear very different at everyday low energies, the theory models them as two different aspects of the same force. Above the unification energy, on the order of 246 GeV,The particular number 246 GeV is taken to be the vacuum expectation value v = (G_\text \sqrt)^ of the Higgs field (where G_\text is the Fermi coupling constant). they would merge into a single force. Thus, if the temperature is high enough – approximately 1015 K – then the electromagnetic force and weak force merge into a combined electroweak force. During the quark epoch (shortly after the Big Bang), the electroweak force split into the electromagnetic and weak force. It is thought that the required temperature of 1015 K has not been seen widely throughout the unive ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lepton
In particle physics, a lepton is an elementary particle of half-integer spin ( spin ) that does not undergo strong interactions. Two main classes of leptons exist: charged leptons (also known as the electron-like leptons or muons), and neutral leptons (better known as neutrinos). Charged leptons can combine with other particles to form various composite particles such as atoms and positronium, while neutrinos rarely interact with anything, and are consequently rarely observed. The best known of all leptons is the electron. There are six types of leptons, known as '' flavours'', grouped in three '' generations''. The first-generation leptons, also called ''electronic leptons'', comprise the electron () and the electron neutrino (); the second are the ''muonic leptons'', comprising the muon () and the muon neutrino (); and the third are the ''tauonic leptons'', comprising the tau () and the tau neutrino (). Electrons have the least mass of all the charged leptons. The heavi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Electroweak Burning
In theoretical physics, a chiral anomaly is the anomalous nonconservation of a chiral current. In everyday terms, it is equivalent to a sealed box that contained equal numbers of left and right-handed bolts, but when opened was found to have more left than right, or vice versa. Such events are expected to be prohibited according to classical conservation laws, but it is known there must be ways they can be broken, because we have evidence of charge–parity non-conservation ("CP violation"). It is possible that other imbalances have been caused by breaking of a ''chiral law'' of this kind. Many physicists suspect that the fact that the observable universe contains more matter than antimatter is caused by a chiral anomaly. Research into chiral symmetry breaking laws is a major endeavor in particle physics research at this time. Informal introduction The chiral anomaly originally referred to the anomalous decay rate of the neutral pion, as computed in the current algebra of t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Radiation Pressure
Radiation pressure is the mechanical pressure exerted upon any surface due to the exchange of momentum between the object and the electromagnetic field. This includes the momentum of light or electromagnetic radiation of any wavelength that is absorbed, reflected, or otherwise emitted (e.g. black-body radiation) by matter on any scale (from macroscopic objects to dust particles to gas molecules). The associated force is called the radiation pressure force, or sometimes just the force of light. The forces generated by radiation pressure are generally too small to be noticed under everyday circumstances; however, they are important in some physical processes and technologies. This particularly includes objects in outer space, where it is usually the main force acting on objects besides gravity, and where the net effect of a tiny force may have a large cumulative effect over long periods of time. For example, had the effects of the Sun's radiation pressure on the spacecraft of the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Neutronium
Neutronium (sometimes shortened to neutrium, also referred to as neutrite) is a hypothetical substance composed purely of neutrons. The word was coined by scientist Andreas von Antropoff in 1926 (before the 1932 discovery of the neutron) for the hypothetical "element of atomic number zero" (with zero protons in its nucleus) that he placed at the head of the periodic table (denoted by -, or Nu). However, the meaning of the term has changed over time, and from the last half of the 20th century onward it has been also used to refer to extremely dense substances resembling the neutron-degenerate matter theorized to exist in the cores of neutron stars; hereinafter "''degenerate'' neutronium" will refer to this. In neutron stars Neutronium is used in popular physics literature to refer to the material present in the cores of neutron stars (stars which are too massive to be supported by electron degeneracy pressure and which collapse into a denser phase of matter). This term is very rar ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
3C 58
3C 58 or 3C58 is a pulsar (designation PSR J0205+6449) and supernova remnant (pulsar wind nebula) within the Milky Way that is possibly associated with the supernova of 1181. There are, however, signs that indicate that it could be several thousand years old, and thus not associated with that supernova. The object is listed as No. 58 in the Third Cambridge Catalogue of Radio Sources. The pulsar is notable for its very high rate of cooling, which is unexplained by standard theories of neutron star formation. It is hypothesized that extreme conditions in the star's interior cause a high neutrino flux, which carries away the energy so that the star cools. 3C 58 has been proposed as a possible quark star. It is located 2° northeast of ε Cassiopeiae and is estimated to be 10,000 light-years away. Its rotation period is 65.7 ms (so PSR J0205+6449 does not belong to the class of millisecond pulsar A millisecond pulsar (MSP) is a pulsar with a rotational peri ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Chandra X-ray Observatory
The Chandra X-ray Observatory (CXO), previously known as the Advanced X-ray Astrophysics Facility (AXAF), is a Flagship-class space telescope launched aboard the during STS-93 by NASA on July 23, 1999. Chandra is sensitive to X-ray sources 100 times fainter than any previous X-ray telescope, enabled by the high angular resolution of its mirrors. Since the Earth's atmosphere absorbs the vast majority of X-rays, they are not detectable from Earth-based telescopes; therefore space-based telescopes are required to make these observations. Chandra is an Earth satellite in a 64-hour orbit, and its mission is ongoing . Chandra is one of the Great Observatories, along with the Hubble Space Telescope, Compton Gamma Ray Observatory (1991–2000), and the Spitzer Space Telescope (2003–2020). The telescope is named after the Nobel Prize-winning Indian-American astrophysicist Subrahmanyan Chandrasekhar. Its mission is similar to that of ESA's XMM-Newton spacecraft, also launched in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |