HOME
*



picture info

Birkhoff's Representation Theorem
:''This is about lattice theory. For other similarly named results, see Birkhoff's theorem (other).'' In mathematics, Birkhoff's representation theorem for distributive lattices states that the elements of any finite distributive lattice can be represented as finite sets, in such a way that the lattice operations correspond to unions and intersections of sets. The theorem can be interpreted as providing a one-to-one correspondence between distributive lattices and partial orders, between quasi-ordinal knowledge spaces and preorders, or between finite topological spaces and preorders. It is named after Garrett Birkhoff, who published a proof of it in 1937.. The name “Birkhoff's representation theorem” has also been applied to two other results of Birkhoff, one from 1935 on the representation of Boolean algebras as families of sets closed under union, intersection, and complement (so-called ''fields of sets'', closely related to the ''rings of sets'' used by Birkho ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lattice Theory
A lattice is an abstract structure studied in the mathematical subdisciplines of order theory and abstract algebra. It consists of a partially ordered set in which every pair of elements has a unique supremum (also called a least upper bound or join) and a unique infimum (also called a greatest lower bound or meet). An example is given by the power set of a set, partially ordered by inclusion, for which the supremum is the union and the infimum is the intersection. Another example is given by the natural numbers, partially ordered by divisibility, for which the supremum is the least common multiple and the infimum is the greatest common divisor. Lattices can also be characterized as algebraic structures satisfying certain axiomatic identities. Since the two definitions are equivalent, lattice theory draws on both order theory and universal algebra. Semilattices include lattices, which in turn include Heyting and Boolean algebras. These ''lattice-like'' structures all admit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Knowledge Space
In mathematical psychology and education theory, a knowledge space is a combinatorial structure used to formulate mathematical models describing the progression of a human learner. Knowledge spaces were introduced in 1985 by Jean-Paul Doignon and Jean-Claude Falmagne, and remain in extensive use in the education theory. Modern applications include two computerized tutoring systems, ALEKS and the defunct RATH. Formally, a knowledge space assumes that a domain of knowledge is a collection of concepts or skills, each of which must be eventually mastered. Not all concepts are interchangeable; some require other concepts as prerequisites. Conversely, competency at one skill may ease the acquisition of another through similarity. A knowledge space marks out which collections of skills are ''feasible'': they can be learned without mastering any other skills. Under reasonable assumptions, the collection of feasible competencies forms the mathematical structure known as an antimatro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematical Psychology
Mathematical psychology is an approach to psychological research that is based on mathematical modeling of perceptual, thought, cognitive and motor processes, and on the establishment of law-like rules that relate quantifiable stimulus characteristics with quantifiable behavior (in practice often constituted by task performance). The mathematical approach is used with the goal of deriving hypotheses that are more exact and thus yield stricter empirical validations. There are five major research areas in mathematical psychology: learning and memory, perception and psychophysics, choice and decision-making, language and thinking, and measurement and scaling. Although psychology, as an independent subject of science, is a more recent discipline than physics, the application of mathematics to psychology has been done in the hope of emulating the success of this approach in the physical sciences, which dates back to at least the seventeenth century. Mathematics in psychology is used e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Closure (mathematics)
In mathematics, a subset of a given set is closed under an operation of the larger set if performing that operation on members of the subset always produces a member of that subset. For example, the natural numbers are closed under addition, but not under subtraction: is not a natural number, although both 1 and 2 are. Similarly, a subset is said to be closed under a ''collection'' of operations if it is closed under each of the operations individually. The closure of a subset is the result of a closure operator applied to the subset. The ''closure'' of a subset under some operations is the smallest subset that is closed under these operations. It is often called the ''span'' (for example linear span) or the ''generated set''. Definitions Let be a set equipped with one or several methods for producing elements of from other elements of . Operations and (partial) multivariate function are examples of such methods. If is a topological space, the limit of a sequence of element ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Family Of Sets
In set theory and related branches of mathematics, a collection F of subsets of a given set S is called a family of subsets of S, or a family of sets over S. More generally, a collection of any sets whatsoever is called a family of sets, set family, or a set system. The term "collection" is used here because, in some contexts, a family of sets may be allowed to contain repeated copies of any given member, and in other contexts it may form a proper class rather than a set. A finite family of subsets of a finite set S is also called a ''hypergraph''. The subject of extremal set theory concerns the largest and smallest examples of families of sets satisfying certain restrictions. Examples The set of all subsets of a given set S is called the power set of S and is denoted by \wp(S). The power set \wp(S) of a given set S is a family of sets over S. A subset of S having k elements is called a k-subset of S. The k-subsets S^ of a set S form a family of sets. Let S = \. An ex ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Birkhoff Representation Theorem
Birkhoff is a surname. Notable people with the surname include: *George David Birkhoff (1884–1944), American mathematician *Garrett Birkhoff (1911–1996), American mathematician, son of George D. See also *Birkhoff (crater) * Birkhoff interpolation *Birkhoff's axioms *Birkhoff's theorem (other), multiple theorems * Birkhoff decomposition, two different decompositions *Birkhoff algorithm *Poincaré–Birkhoff–Witt theorem In mathematics, more specifically in the theory of Lie algebras, the Poincaré–Birkhoff–Witt theorem (or PBW theorem) is a result giving an explicit description of the universal enveloping algebra of a Lie algebra. It is named after Henri Poi ...
{{surname, Birkhoff ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dedekind Number
File:Monotone Boolean functions 0,1,2,3.svg, 400px, The free distributive lattices of monotonic Boolean functions on 0, 1, 2, and 3 arguments, with 2, 3, 6, and 20 elements respectively (move mouse over right diagram to see description) circle 659 623 30 circle 658 552 35 circle 587 480 35 circle 659 481 35 circle 729 481 35 circle 588 410 35 circle 658 410 35 circle 729 410 35 circle 548 339 30 circle 604 339 30 circle 758 339 30 circle 661 339 35 circle 588 268 35 circle 659 267 35 circle 729 268 35 circle 588 197 35 circle 658 197 35 circle 729 197 35 circle 658 126 35 circle 659 56 30 desc bottom-left In mathematics, the Dedekind numbers are a rapidly growing sequence of integers named after Richard Dedekind, who defined them in 1897. The Dedekind number ''M''(''n'') counts the number of monotone boolean functions of ''n'' variables. Equivalently, it counts the number of antichains of subsets of an ''n''-element set, the number of elements in a free di ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Free Distributive Lattice
In mathematics, a distributive lattice is a lattice in which the operations of join and meet distribute over each other. The prototypical examples of such structures are collections of sets for which the lattice operations can be given by set union and intersection. Indeed, these lattices of sets describe the scenery completely: every distributive lattice is—up to isomorphism—given as such a lattice of sets. Definition As in the case of arbitrary lattices, one can choose to consider a distributive lattice ''L'' either as a structure of order theory or of universal algebra. Both views and their mutual correspondence are discussed in the article on lattices. In the present situation, the algebraic description appears to be more convenient. A lattice (''L'',∨,∧) is distributive if the following additional identity holds for all ''x'', ''y'', and ''z'' in ''L'': : ''x'' ∧ (''y'' ∨ ''z'') = (''x'' ∧ ''y'') ∨ (''x'' ∧ ''z''). Viewing lattices as partially o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Subset
In mathematics, Set (mathematics), set ''A'' is a subset of a set ''B'' if all Element (mathematics), elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are unequal, then ''A'' is a proper subset of ''B''. The relationship of one set being a subset of another is called inclusion (or sometimes containment). ''A'' is a subset of ''B'' may also be expressed as ''B'' includes (or contains) ''A'' or ''A'' is included (or contained) in ''B''. A ''k''-subset is a subset with ''k'' elements. The subset relation defines a partial order on sets. In fact, the subsets of a given set form a Boolean algebra (structure), Boolean algebra under the subset relation, in which the join and meet are given by Intersection (set theory), intersection and Union (set theory), union, and the subset relation itself is the Inclusion (Boolean algebra), Boolean inclusion relation. Definition If ''A'' and ''B'' are sets and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lower Set
In mathematics, an upper set (also called an upward closed set, an upset, or an isotone set in ''X'') of a partially ordered set (X, \leq) is a subset S \subseteq X with the following property: if ''s'' is in ''S'' and if ''x'' in ''X'' is larger than ''s'' (that is, if s \leq x), then ''x'' is in ''S''. In words, this means that any ''x'' element of ''X'' that is \,\geq\, to some element of ''S'' is necessarily also an element of ''S''. The term lower set (also called a downward closed set, down set, decreasing set, initial segment, or semi-ideal) is defined similarly as being a subset ''S'' of ''X'' with the property that any element ''x'' of ''X'' that is \,\leq\, to some element of ''S'' is necessarily also an element of ''S''. Definition Let (X, \leq) be a preordered set. An in X (also called an , an , or an set) is a subset U \subseteq X that is "closed under going up", in the sense that :for all u \in U and all x \in X, if u \leq x then x \in U. The dual notion is a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Prime Power
In mathematics, a prime power is a positive integer which is a positive integer power of a single prime number. For example: , and are prime powers, while , and are not. The sequence of prime powers begins: 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 128, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 243, 251, … . The prime powers are those positive integers that are divisible by exactly one prime number; in particular, the number 1 is not a prime power. Prime powers are also called primary numbers, as in the primary decomposition. Properties Algebraic properties Prime powers are powers of prime numbers. Every prime power (except powers of 2) has a primitive root; thus the multiplicative group of integers modulo ''p''''n'' (i.e. the group of units of the ring Z/''p''''n''Z) is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]