Bernoulli Trial
   HOME
*



picture info

Bernoulli Trial
In the theory of probability and statistics, a Bernoulli trial (or binomial trial) is a random experiment with exactly two possible outcomes, "success" and "failure", in which the probability of success is the same every time the experiment is conducted. It is named after Jacob Bernoulli, a 17th-century Swiss mathematician, who analyzed them in his ''Ars Conjectandi'' (1713). The mathematical formalisation of the Bernoulli trial is known as the Bernoulli process. This article offers an elementary introduction to the concept, whereas the article on the Bernoulli process offers a more advanced treatment. Since a Bernoulli trial has only two possible outcomes, it can be framed as some "yes or no" question. For example: *Is the top card of a shuffled deck an ace? *Was the newborn child a girl? (See human sex ratio.) Therefore, success and failure are merely labels for the two outcomes, and should not be construed literally. The term "success" in this sense consists in the result ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Bernoulli Trial Progression
Bernoulli can refer to: People *Bernoulli family of 17th and 18th century Swiss mathematicians: ** Daniel Bernoulli (1700–1782), developer of Bernoulli's principle **Jacob Bernoulli (1654–1705), also known as Jacques, after whom Bernoulli numbers are named ** Jacob II Bernoulli (1759–1789) **Johann Bernoulli (1667–1748) ** Johann II Bernoulli (1710–1790) **Johann III Bernoulli (1744–1807), also known as Jean, astronomer ** Nicolaus I Bernoulli (1687–1759) ** Nicolaus II Bernoulli (1695–1726) * Elisabeth Bernoulli (1873–1935), Swiss temperance campaigner * Hans Benno Bernoulli (1876–1959), Swiss architect * Ludwig Bernoully (1873–1928), German architect Mathematics * Bernoulli differential equation * Bernoulli distribution and Bernoulli random variable * Bernoulli's inequality * Bernoulli's triangle * Bernoulli number * Bernoulli polynomials * Bernoulli process * Bernoulli trial * Lemniscate of Bernoulli Science * 2034 Bernoulli, minor planet * Bernoulli's p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Odds (statistics)
Odds provide a measure of the likelihood of a particular outcome. They are calculated as the ratio of the number of events that produce that outcome to the number that do not. Odds are commonly used in gambling and statistics. Odds also have a simple relation with probability: the odds of an outcome are the ratio of the probability that the outcome occurs to the probability that the outcome does not occur. In mathematical terms, where p is the probability of the outcome: :\text = \frac where 1-p is the probability that the outcome does not occur. Odds can be demonstrated by examining rolling a six-sided die. The odds of rolling a 6 is 1:5. This is because there is 1 event (rolling a 6) that produces the specified outcome of "rolling a 6", and 5 events that do not (rolling a 1,2,3,4 or 5). The odds of rolling either a 5 or 6 is 2:4. This is because there are 2 events (rolling a 5 or 6) that produce the specified outcome of "rolling either a 5 or 6", and 4 events that do ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Binomial Distribution
In probability theory and statistics, the binomial distribution with parameters ''n'' and ''p'' is the discrete probability distribution of the number of successes in a sequence of ''n'' independent experiments, each asking a yes–no question, and each with its own Boolean-valued outcome: ''success'' (with probability ''p'') or ''failure'' (with probability q=1-p). A single success/failure experiment is also called a Bernoulli trial or Bernoulli experiment, and a sequence of outcomes is called a Bernoulli process; for a single trial, i.e., ''n'' = 1, the binomial distribution is a Bernoulli distribution. The binomial distribution is the basis for the popular binomial test of statistical significance. The binomial distribution is frequently used to model the number of successes in a sample of size ''n'' drawn with replacement from a population of size ''N''. If the sampling is carried out without replacement, the draws are not independent and so the resulting ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bernoulli Distribution
In probability theory and statistics, the Bernoulli distribution, named after Swiss mathematician Jacob Bernoulli,James Victor Uspensky: ''Introduction to Mathematical Probability'', McGraw-Hill, New York 1937, page 45 is the discrete probability distribution of a random variable which takes the value 1 with probability p and the value 0 with probability q = 1-p. Less formally, it can be thought of as a model for the set of possible outcomes of any single experiment that asks a yes–no question. Such questions lead to outcomes that are boolean-valued: a single bit whose value is success/ yes/true/ one with probability ''p'' and failure/no/ false/zero with probability ''q''. It can be used to represent a (possibly biased) coin toss where 1 and 0 would represent "heads" and "tails", respectively, and ''p'' would be the probability of the coin landing on heads (or vice versa where 1 would represent tails and ''p'' would be the probability of tails). In particular, unfair coins ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bernoulli Sampling
In the theory of finite population sampling, Bernoulli sampling is a sampling process where each element of the population is subjected to an independent Bernoulli trial which determines whether the element becomes part of the sample. An essential property of Bernoulli sampling is that all elements of the population have equal probability of being included in the sample. Bernoulli sampling is therefore a special case of Poisson sampling. In Poisson sampling each element of the population may have a different probability of being included in the sample. In Bernoulli sampling, the probability is equal for all the elements. Because each element of the population is considered separately for the sample, the sample size is not fixed but rather follows a binomial distribution. Example The most basic Bernoulli method generates ''n'' random variates to extract a sample from a population of ''n'' items. Suppose you want to extract a given percentage ''pct'' of the population. The algori ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bernoulli Scheme
In mathematics, the Bernoulli scheme or Bernoulli shift is a generalization of the Bernoulli process to more than two possible outcomes. Bernoulli schemes appear naturally in symbolic dynamics, and are thus important in the study of dynamical systems. Many important dynamical systems (such as Axiom A systems) exhibit a repellor that is the product of the Cantor set and a smooth manifold, and the dynamics on the Cantor set are isomorphic to that of the Bernoulli shift. This is essentially the Markov partition. The term ''shift'' is in reference to the shift operator, which may be used to study Bernoulli schemes. The Ornstein isomorphism theorem shows that Bernoulli shifts are isomorphic when their entropy is equal. Definition A Bernoulli scheme is a discrete-time stochastic process where each independent random variable may take on one of ''N'' distinct possible values, with the outcome ''i'' occurring with probability p_i, with ''i'' = 1, ..., ''N'', and :\s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rajeev Motwani
Rajeev Motwani (Hindi: राजीव मोटवानी , March 24, 1962 – June 5, 2009) was an Indian American professor of Computer Science at Stanford University whose research focused on theoretical computer science. He was an early advisor and supporter of companies including Google and PayPal, and a special advisor to Sequoia Capital. He was a winner of the Gödel Prize in 2001. Education Rajeev Motwani was born in Jammu, Jammu and Kashmir, India on March 24, 1962, into a Sindhi Hindu family and grew up in New Delhi. His father was in the Indian Army. He had two brothers. As a child, inspired by luminaries like Gauss, he wanted to become a mathematician. Motwani went to St Columba's School, New Delhi. He completed his B.Tech. in Computer Science from the Indian Institute of Technology Kanpur in Kanpur, Uttar Pradesh in 1983 and got his Ph.D. in Computer Science from the University of California, Berkeley in Berkeley, California, United States in 1988, under the s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Poisson Trial
In survey methodology, Poisson sampling (sometimes denoted as ''PO sampling'') is a sampling process where each element of the population is subjected to an independent Bernoulli trial which determines whether the element becomes part of the sample.Ghosh, Dhiren, and Andrew Vogt. "Sampling methods related to Bernoulli and Poisson Sampling." Proceedings of the Joint Statistical Meetings. American Statistical Association Alexandria, VA, 2002(pdf)/ref> Each element of the population may have a different probability of being included in the sample (\pi_i). The probability of being included in a sample during the drawing of a single sample is denoted as the ''first-order inclusion probability'' of that element (p_i). If all first-order inclusion probabilities are equal, Poisson sampling becomes equivalent to Bernoulli sampling, which can therefore be considered to be a special case of Poisson sampling. A mathematical consequence of Poisson sampling Mathematically, the first-order in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Negative Binomial Distribution
In probability theory and statistics, the negative binomial distribution is a discrete probability distribution that models the number of failures in a sequence of independent and identically distributed Bernoulli trials before a specified (non-random) number of successes (denoted r) occurs. For example, we can define rolling a 6 on a die as a success, and rolling any other number as a failure, and ask how many failure rolls will occur before we see the third success (r=3). In such a case, the probability distribution of the number of failures that appear will be a negative binomial distribution. An alternative formulation is to model the number of total trials (instead of the number of failures). In fact, for a specified (non-random) number of successes (r), the number of failures (n - r) are random because the total trials (n) are random. For example, we could use the negative binomial distribution to model the number of days n (random) a certain machine works (specified by r) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Binomial Coefficient
In mathematics, the binomial coefficients are the positive integers that occur as coefficients in the binomial theorem. Commonly, a binomial coefficient is indexed by a pair of integers and is written \tbinom. It is the coefficient of the term in the polynomial expansion of the binomial power ; this coefficient can be computed by the multiplicative formula :\binom nk = \frac, which using factorial notation can be compactly expressed as :\binom = \frac. For example, the fourth power of is :\begin (1 + x)^4 &= \tbinom x^0 + \tbinom x^1 + \tbinom x^2 + \tbinom x^3 + \tbinom x^4 \\ &= 1 + 4x + 6 x^2 + 4x^3 + x^4, \end and the binomial coefficient \tbinom =\tfrac = \tfrac = 6 is the coefficient of the term. Arranging the numbers \tbinom, \tbinom, \ldots, \tbinom in successive rows for n=0,1,2,\ldots gives a triangular array called Pascal's triangle, satisfying the recurrence relation :\binom = \binom + \binom. The binomial coefficients occur in many areas of mathematics, a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Binomial Distribution
In probability theory and statistics, the binomial distribution with parameters ''n'' and ''p'' is the discrete probability distribution of the number of successes in a sequence of ''n'' independent experiments, each asking a yes–no question, and each with its own Boolean-valued outcome: ''success'' (with probability ''p'') or ''failure'' (with probability q=1-p). A single success/failure experiment is also called a Bernoulli trial or Bernoulli experiment, and a sequence of outcomes is called a Bernoulli process; for a single trial, i.e., ''n'' = 1, the binomial distribution is a Bernoulli distribution. The binomial distribution is the basis for the popular binomial test of statistical significance. The binomial distribution is frequently used to model the number of successes in a sample of size ''n'' drawn with replacement from a population of size ''N''. If the sampling is carried out without replacement, the draws are not independent and so the resulting ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Statistically Independent
Independence is a fundamental notion in probability theory, as in statistics and the theory of stochastic processes. Two events are independent, statistically independent, or stochastically independent if, informally speaking, the occurrence of one does not affect the probability of occurrence of the other or, equivalently, does not affect the odds. Similarly, two random variables are independent if the realization of one does not affect the probability distribution of the other. When dealing with collections of more than two events, two notions of independence need to be distinguished. The events are called pairwise independent if any two events in the collection are independent of each other, while mutual independence (or collective independence) of events means, informally speaking, that each event is independent of any combination of other events in the collection. A similar notion exists for collections of random variables. Mutual independence implies pairwise independence, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]