Behrend's Formula
   HOME
*





Behrend's Formula
In algebraic geometry, Behrend's trace formula is a generalization of the Grothendieck–Lefschetz trace formula to a smooth algebraic stack over a finite field conjectured in 1993 and proven in 2003 by Kai Behrend. Unlike the classical one, the formula counts points in the " stacky way"; it takes into account the presence of nontrivial automorphisms. The desire for the formula comes from the fact that it applies to the moduli stack of principal bundles on a curve over a finite field (in some instances indirectly, via the Harder–Narasimhan stratification, as the moduli stack is not of finite type.) See the moduli stack of principal bundles and references therein for the precise formulation in this case. Pierre Deligne found an example that shows the formula may be interpreted as a sort of the Selberg trace formula. A proof of the formula in the context of the six operations formalism developed by Yves Laszlo and Martin Olsson is given by Shenghao Sun. Formulation By def ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Geometry
Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros. The fundamental objects of study in algebraic geometry are algebraic varieties, which are geometric manifestations of solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are: plane algebraic curves, which include lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscates and Cassini ovals. A point of the plane belongs to an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of the points of special interest like the singular points, the inflection points and the points at infinity. More advanced questions involve the topology of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Six Operations
In mathematics, Grothendieck's six operations, named after Alexander Grothendieck, is a formalism in homological algebra, also known as the six-functor formalism. It originally sprang from the relations in étale cohomology that arise from a morphism of schemes . The basic insight was that many of the elementary facts relating cohomology on ''X'' and ''Y'' were formal consequences of a small number of axioms. These axioms hold in many cases completely unrelated to the original context, and therefore the formal consequences also hold. The six operations formalism has since been shown to apply to contexts such as ''D''-modules on algebraic varieties, sheaves on locally compact topological spaces, and motives. The operations The operations are six functors. Usually these are functors between derived categories and so are actually left and right derived functors. * the direct image f_* * the inverse image f^* * the proper (or extraordinary) direct image f_! * the proper (or ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Borel's Theorem
In topology, a branch of mathematics, Borel's theorem, due to , says the cohomology ring of a classifying space or a classifying stack is a polynomial ring. See also *Atiyah–Bott formula In algebraic geometry, the Atiyah–Bott formula says the cohomology ring :\operatorname^*(\operatorname_G(X), \mathbb_l) of the moduli stack of principal bundles is a free graded-commutative algebra on certain homogeneous generators. The origin ... Notes References * * {{topology-stub Theorems in algebraic topology Theorems in algebraic geometry ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lang's Theorem
In algebraic geometry, Lang's theorem, introduced by Serge Lang, states: if ''G'' is a connected smooth algebraic group over a finite field \mathbf_q, then, writing \sigma: G \to G, \, x \mapsto x^q for the Frobenius, the morphism of varieties :G \to G, \, x \mapsto x^ \sigma(x)  is surjective. Note that the kernel of this map (i.e., G = G(\overline) \to G(\overline)) is precisely G(\mathbf_q). The theorem implies that H^1(\mathbf_q, G) = H_^1(\operatorname\mathbf_q, G)   vanishes, and, consequently, any ''G''-bundle on \operatorname \mathbf_q is isomorphic to the trivial one. Also, the theorem plays a basic role in the theory of finite groups of Lie type. It is not necessary that ''G'' is affine. Thus, the theorem also applies to abelian varieties (e.g., elliptic curves.) In fact, this application was Lang's initial motivation. If ''G'' is affine, the Frobenius \sigma may be replaced by any surjective map with finitely many fixed points (see below for the precise statem ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Torsor
In mathematics, a principal homogeneous space, or torsor, for a group ''G'' is a homogeneous space ''X'' for ''G'' in which the stabilizer subgroup of every point is trivial. Equivalently, a principal homogeneous space for a group ''G'' is a non-empty set ''X'' on which ''G'' acts freely and transitively (meaning that, for any ''x'', ''y'' in ''X'', there exists a unique ''g'' in ''G'' such that , where · denotes the (right) action of ''G'' on ''X''). An analogous definition holds in other categories, where, for example, *''G'' is a topological group, ''X'' is a topological space and the action is continuous, *''G'' is a Lie group, ''X'' is a smooth manifold and the action is smooth, *''G'' is an algebraic group, ''X'' is an algebraic variety and the action is regular. Definition If ''G'' is nonabelian then one must distinguish between left and right torsors according to whether the action is on the left or right. In this article, we will use right actions. To state the defi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Classifying Stack
In algebraic geometry, a quotient stack is a stack that parametrizes equivariant objects. Geometrically, it generalizes a quotient of a scheme or a variety by a group: a quotient variety, say, would be a coarse approximation of a quotient stack. The notion is of fundamental importance in the study of stacks: a stack that arises in nature is often either a quotient stack itself or admits a stratification by quotient stacks (e.g., a Deligne–Mumford stack.) A quotient stack is also used to construct other stacks like classifying stacks. Definition A quotient stack is defined as follows. Let ''G'' be an affine smooth group scheme over a scheme ''S'' and ''X'' an ''S''-scheme on which ''G'' acts. Let the quotient stack /G/math> be the category over the category of ''S''-schemes: *an object over ''T'' is a principal ''G''-bundle P\to T together with equivariant map P\to X; *an arrow from P\to T to P'\to T' is a bundle map (i.e., forms a commutative diagram) that is compatible with ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Poincaré Duality
In mathematics, the Poincaré duality theorem, named after Henri Poincaré, is a basic result on the structure of the homology and cohomology groups of manifolds. It states that if ''M'' is an ''n''-dimensional oriented closed manifold (compact and without boundary), then the ''k''th cohomology group of ''M'' is isomorphic to the (n-k)th homology group of ''M'', for all integers ''k'' :H^k(M) \cong H_(M). Poincaré duality holds for any coefficient ring, so long as one has taken an orientation with respect to that coefficient ring; in particular, since every manifold has a unique orientation mod 2, Poincaré duality holds mod 2 without any assumption of orientation. History A form of Poincaré duality was first stated, without proof, by Henri Poincaré in 1893. It was stated in terms of Betti numbers: The ''k''th and (n-k)th Betti numbers of a closed (i.e., compact and without boundary) orientable ''n''-manifold are equal. The ''cohomology'' concept was at that time about 40 y ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Smooth Topology
In algebraic geometry, the smooth topology is a certain Grothendieck topology, which is finer than étale topology. Its main use is to define the cohomology of an algebraic stack with coefficients in, say, the étale sheaf \mathbb_l. To understand the problem that motivates the notion, consider the classifying stack In algebraic geometry, a quotient stack is a stack that parametrizes equivariant objects. Geometrically, it generalizes a quotient of a scheme or a variety by a group: a quotient variety, say, would be a coarse approximation of a quotient stack. Th ... B\mathbb_m over \operatorname \mathbf_q. Then B\mathbb_m = \operatorname \mathbf_q in the étale topology; i.e., just a point. However, we expect the "correct" cohomology ring of B\mathbb_m to be more like that of \mathbb P^\infty as the ring should classify line bundles. Thus, the cohomology of B\mathbb_m should be defined using smooth topology for formulae like Behrend's fixed point formula to hold. Notes Referenc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Cohomology Of A Stack
In algebraic geometry, the cohomology of a stack is a generalization of étale cohomology. In a sense, it is a theory that is coarser than the Chow group of a stack. The cohomology of a quotient stack (e.g., classifying stack) can be thought of as an algebraic counterpart of equivariant cohomology. For example, Borel's theorem states that the cohomology ring of a classifying stack In algebraic geometry, a quotient stack is a stack that parametrizes equivariant objects. Geometrically, it generalizes a quotient of a scheme or a variety by a group: a quotient variety, say, would be a coarse approximation of a quotient stack. T ... is a polynomial ring. See also * l-adic sheaf * smooth topology References * {{algebraic-geometry-stub Algebraic geometry Cohomology theories ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Arithmetic Frobenius
In mathematics, the Frobenius endomorphism is defined in any commutative ring ''R'' that has characteristic ''p'', where ''p'' is a prime number. Namely, the mapping φ that takes ''r'' in ''R'' to ''r''''p'' is a ring endomorphism of ''R''. The image of φ is then ''R''''p'', the subring of ''R'' consisting of ''p''-th powers. In some important cases, for example finite fields, φ is surjective. Otherwise φ is an endomorphism but not a ring ''automorphism''. The terminology of geometric Frobenius arises by applying the spectrum of a ring construction to φ. This gives a mapping :φ*: Spec(''R''''p'') → Spec(''R'') of affine schemes. Even in cases where ''R''''p'' = ''R'' this is not the identity, unless ''R'' is the prime field. Mappings created by fibre product with φ*, i.e. base changes, tend in scheme theory to be called ''geometric Frobenius''. The reason for a careful terminology is that the Frobenius automorphism in Galois groups, or defined by transport of structu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Selberg Trace Formula
In mathematics, the Selberg trace formula, introduced by , is an expression for the character of the unitary representation of a Lie group on the space of square-integrable functions, where is a cofinite discrete group. The character is given by the trace of certain functions on . The simplest case is when is cocompact, when the representation breaks up into discrete summands. Here the trace formula is an extension of the Frobenius formula for the character of an induced representation of finite groups. When is the cocompact subgroup of the real numbers , the Selberg trace formula is essentially the Poisson summation formula. The case when is not compact is harder, because there is a continuous spectrum, described using Eisenstein series. Selberg worked out the non-compact case when is the group ; the extension to higher rank groups is the Arthur–Selberg trace formula. When is the fundamental group of a Riemann surface, the Selberg trace formula describes the spectru ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Grothendieck–Lefschetz Trace Formula
In algebraic geometry, the Grothendieck trace formula expresses the number of points of a variety over a finite field in terms of the trace of the Frobenius endomorphism on its cohomology groups. There are several generalizations: the Frobenius endomorphism can be replaced by a more general endomorphism, in which case the points over a finite field are replaced by its fixed points, and there is also a more general version for a sheaf over the variety, where the cohomology groups are replaced by cohomology with coefficients in the sheaf. The Grothendieck trace formula is an analogue in algebraic geometry of the Lefschetz fixed-point theorem in algebraic topology. One application of the Grothendieck trace formula is to express the zeta function of a variety over a finite field, or more generally the L-series of a sheaf, as a sum over traces of Frobenius on cohomology groups. This is one of the steps used in the proof of the Weil conjectures. Behrend's trace formula generalizes the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]