HOME
*



picture info

Bayesian Quadrature
Bayesian quadrature is a method for approximating intractable integration problems. It falls within the class of probabilistic numerical methods. Bayesian quadrature views numerical integration as a Bayesian inference task, where function evaluations are used to estimate the integral of that function. For this reason, it is sometimes also referred to as "Bayesian probabilistic numerical integration" or "Bayesian numerical integration". The name "Bayesian cubature" is also sometimes used when the integrand is multi-dimensional. A potential advantage of this approach is that it provides probabilistic uncertainty quantification for the value of the integral. Bayesian quadrature Numerical integration Let f:\mathcal \rightarrow \mathbb be a function defined on a domain \mathcal (where typically \mathcal\subseteq \mathbb^d). In numerical integration, function evaluations f(x_1), \ldots, f(x_n) at distinct locations x_1, \ldots, x_n in \mathcal are used to estimate the integra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Probabilistic Numerics
Probabilistic numerics is a scientific field at the intersection of statistics, machine learning and applied mathematics, where tasks in numerical analysis including finding numerical solutions for integration, linear algebra, optimisation and differential equations are seen as problems of statistical, probabilistic, or Bayesian inference. Introduction A numerical method is an algorithm that ''approximates'' the solution to a mathematical problem (examples below include the solution to a linear system of equations, the value of an integral, the solution of a differential equation, the minimum of a multivariate function). In a ''probabilistic'' numerical algorithm, this process of approximation is thought of as a problem of ''estimation'', ''inference'' or ''learning'' and realised in the framework of probabilistic inference (often, but not always, Bayesian inference). Formally, this means casting the setup of the computational problem in terms of a prior distribution, formulati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Matérn Covariance Function
In statistics, the Matérn covariance, also called the Matérn kernel, is a covariance function used in spatial statistics, geostatistics, machine learning, image analysis, and other applications of multivariate statistical analysis on metric spaces. It is named after the Swedish forestry statistician Bertil Matérn. It specifies the covariance between two measurements as a function of the distance between the points at which they are taken. Since the covariance only depends on distances between points, it is stationary. If the distance is Euclidean distance, the Matérn covariance is also isotropic. Definition The Matérn covariance between measurements taken at two points separated by ''d'' distance units is given by Rasmussen, Carl Edward and Williams, Christopher K. I. (2006Gaussian Processes for Machine Learning/ref> : C_\nu(d) = \sigma^2\frac\Bigg(\sqrt\frac\Bigg)^\nu K_\nu\Bigg(\sqrt\frac\Bigg), where \Gamma is the gamma function, K_\nu is the modified Bessel function ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bayesian Experimental Design
Bayesian experimental design provides a general probability-theoretical framework from which other theories on experimental design can be derived. It is based on Bayesian inference to interpret the observations/data acquired during the experiment. This allows accounting for both any prior knowledge on the parameters to be determined as well as uncertainties in observations. The theory of Bayesian experimental design is to a certain extent based on the theory for making optimal decisions under uncertainty. The aim when designing an experiment is to maximize the expected utility of the experiment outcome. The utility is most commonly defined in terms of a measure of the accuracy of the information provided by the experiment (e.g. the Shannon information or the negative of the variance), but may also involve factors such as the financial cost of performing the experiment. What will be the optimal experiment design depends on the particular utility criterion chosen. Relations to more ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Active Learning (machine Learning)
Active learning is a special case of machine learning in which a learning algorithm can interactively query a user (or some other information source) to label new data points with the desired outputs. In statistics literature, it is sometimes also called optimal experimental design. The information source is also called ''teacher'' or ''oracle''. There are situations in which unlabeled data is abundant but manual labeling is expensive. In such a scenario, learning algorithms can actively query the user/teacher for labels. This type of iterative supervised learning is called active learning. Since the learner chooses the examples, the number of examples to learn a concept can often be much lower than the number required in normal supervised learning. With this approach, there is a risk that the algorithm is overwhelmed by uninformative examples. Recent developments are dedicated to multi-label active learning, hybrid active learning and active learning in a single-pass (on-line) c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quasi-Monte Carlo Method
In numerical analysis, the quasi-Monte Carlo method is a method for numerical integration and solving some other problems using low-discrepancy sequences (also called quasi-random sequences or sub-random sequences). This is in contrast to the regular Monte Carlo method or Monte Carlo integration, which are based on sequences of pseudorandom numbers. Monte Carlo and quasi-Monte Carlo methods are stated in a similar way. The problem is to approximate the integral of a function ''f'' as the average of the function evaluated at a set of points ''x''1, ..., ''x''''N'': : \int_ f(u)\,u \approx \frac\,\sum_^N f(x_i). Since we are integrating over the ''s''-dimensional unit cube, each ''x''''i'' is a vector of ''s'' elements. The difference between quasi-Monte Carlo and Monte Carlo is the way the ''x''''i'' are chosen. Quasi-Monte Carlo uses a low-discrepancy sequence such as the Halton sequence, the Sobol sequence, or the Faure sequence, whereas Monte Carlo uses a pseudorandom sequence ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Monte Carlo Integration
In mathematics, Monte Carlo integration is a technique for numerical integration using random numbers. It is a particular Monte Carlo method that numerically computes a definite integral. While other algorithms usually evaluate the integrand at a regular grid, Monte Carlo randomly chooses points at which the integrand is evaluated. This method is particularly useful for higher-dimensional integrals. There are different methods to perform a Monte Carlo integration, such as uniform sampling, stratified sampling, importance sampling, sequential Monte Carlo (also known as a particle filter), and mean-field particle methods. Overview In numerical integration, methods such as the trapezoidal rule use a deterministic approach. Monte Carlo integration, on the other hand, employs a non-deterministic approach: each realization provides a different outcome. In Monte Carlo, the final outcome is an approximation of the correct value with respective error bars, and the correct value is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dirichlet Process
In probability theory, Dirichlet processes (after the distribution associated with Peter Gustav Lejeune Dirichlet) are a family of stochastic processes whose realizations are probability distributions. In other words, a Dirichlet process is a probability distribution whose range is itself a set of probability distributions. It is often used in Bayesian inference to describe the prior knowledge about the distribution of random variables—how likely it is that the random variables are distributed according to one or another particular distribution. As an example, a bag of 100 real-world dice is a ''random probability mass function (random pmf)'' - to sample this random pmf you put your hand in the bag and draw out a die, that is, you draw a pmf. A bag of dice manufactured using a crude process 100 years ago will likely have probabilities that deviate wildly from the uniform pmf, whereas a bag of state-of-the-art dice used by Las Vegas casinos may have barely perceptible imperfe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kernel Methods For Vector Output
Kernel methods are a well-established tool to analyze the relationship between input data and the corresponding output of a function. Kernels encapsulate the properties of functions in a computationally efficient way and allow algorithms to easily swap functions of varying complexity. In typical machine learning algorithms, these functions produce a scalar output. Recent development of kernel methods for functions with vector-valued output is due, at least in part, to interest in simultaneously solving related problems. Kernels which capture the relationship between the problems allow them to ''borrow strength'' from each other. Algorithms of this type include multi-task learning (also called multi-output learning or vector-valued learning), transfer learning, and co-kriging. Multi-label classification can be interpreted as mapping inputs to (binary) coding vectors with length equal to the number of classes. In Gaussian processes, kernels are called covariance functions. Multiple ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kernel Embedding Of Distributions
In machine learning, the kernel embedding of distributions (also called the kernel mean or mean map) comprises a class of nonparametric methods in which a probability distribution is represented as an element of a reproducing kernel Hilbert space (RKHS).A. Smola, A. Gretton, L. Song, B. Schölkopf. (2007)A Hilbert Space Embedding for Distributions. ''Algorithmic Learning Theory: 18th International Conference''. Springer: 13–31. A generalization of the individual data-point feature mapping done in classical kernel methods, the embedding of distributions into infinite-dimensional feature spaces can preserve all of the statistical features of arbitrary distributions, while allowing one to compare and manipulate distributions using Hilbert space operations such as inner products, distances, projections, linear transformations, and spectral analysis.L. Song, K. Fukumizu, F. Dinuzzo, A. Gretton (2013)Kernel Embeddings of Conditional Distributions: A unified kernel framework for non ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Numerical Integration
In analysis, numerical integration comprises a broad family of algorithms for calculating the numerical value of a definite integral, and by extension, the term is also sometimes used to describe the numerical solution of differential equations. This article focuses on calculation of definite integrals. The term numerical quadrature (often abbreviated to ''quadrature'') is more or less a synonym for ''numerical integration'', especially as applied to one-dimensional integrals. Some authors refer to numerical integration over more than one dimension as cubature; others take ''quadrature'' to include higher-dimensional integration. The basic problem in numerical integration is to compute an approximate solution to a definite integral :\int_a^b f(x) \, dx to a given degree of accuracy. If is a smooth function integrated over a small number of dimensions, and the domain of integration is bounded, there are many methods for approximating the integral to the desired precision. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bayesian Quadrature Animation
Thomas Bayes (/beɪz/; c. 1701 – 1761) was an English statistician, philosopher, and Presbyterian minister. Bayesian () refers either to a range of concepts and approaches that relate to statistical methods based on Bayes' theorem, or a follower of these methods. A number of things have been named after Thomas Bayes, including: Bayes *Bayes action *Bayes Business School *Bayes classifier * Bayes discriminability index *Bayes error rate *Bayes estimator *Bayes factor * Bayes Impact *Bayes linear statistics *Bayes prior * Bayes' theorem / Bayes-Price theorem -- sometimes called Bayes' rule or Bayesian updating. *Empirical Bayes method *Evidence under Bayes theorem *Hierarchical Bayes model *Laplace–Bayes estimator *Naive Bayes classifier * Random naive Bayes Bayesian *Approximate Bayesian computation *Bayesian average *Bayesian Analysis (journal) *Bayesian approaches to brain function * Bayesian bootstrap *Bayesian control rule *Bayesian cognitive science *Bayesian econo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bayesian Inference
Bayesian inference is a method of statistical inference in which Bayes' theorem is used to update the probability for a hypothesis as more evidence or information becomes available. Bayesian inference is an important technique in statistics, and especially in mathematical statistics. Bayesian updating is particularly important in the dynamic analysis of a sequence of data. Bayesian inference has found application in a wide range of activities, including science, engineering, philosophy, medicine, sport, and law. In the philosophy of decision theory, Bayesian inference is closely related to subjective probability, often called "Bayesian probability". Introduction to Bayes' rule Formal explanation Bayesian inference derives the posterior probability as a consequence of two antecedents: a prior probability and a "likelihood function" derived from a statistical model for the observed data. Bayesian inference computes the posterior probability according to Bayes' theorem: ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]