HOME
*





Ballistic Deflection Transistor
Ballistic deflection transistors (BDTs) are electronic devices, developed since 2006, for high-speed integrated circuits, which is a set of circuits bounded on semiconductor material. They use electromagnetic forces instead of a logic gate, a device used to perform solely on specified inputs, to switch the forces of electrons. The unique design of this transistor includes individual electrons bouncing from wedge-shaped obstacles called deflectors. Initially accelerated by electric field, electrons are then guided on their respective paths by electromagnetic deflection. Electrons are therefore able to travel without being scattered by atoms or defects, thus resulting in improved speed and reduced power consumption. Purpose A ballistic deflection transistor would be significant in acting as both a linear amplifier and a switch for current flow on electronic devices, which could be used to maintain digital logic and memory. A transistor switching speed is greatly affected by how fast ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Integrated Circuits
An integrated circuit or monolithic integrated circuit (also referred to as an IC, a chip, or a microchip) is a set of electronic circuits on one small flat piece (or "chip") of semiconductor material, usually silicon. Large numbers of tiny MOSFETs (metal–oxide–semiconductor field-effect transistors) integrate into a small chip. This results in circuits that are orders of magnitude smaller, faster, and less expensive than those constructed of discrete electronic components. The IC's mass production capability, reliability, and building-block approach to integrated circuit design has ensured the rapid adoption of standardized ICs in place of designs using discrete transistors. ICs are now used in virtually all electronic equipment and have revolutionized the world of electronics. Computers, mobile phones and other home appliances are now inextricable parts of the structure of modern societies, made possible by the small size and low cost of ICs such as modern compute ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Logic Gate
A logic gate is an idealized or physical device implementing a Boolean function, a logical operation performed on one or more binary inputs that produces a single binary output. Depending on the context, the term may refer to an ideal logic gate, one that has for instance zero rise time and unlimited fan-out, or it may refer to a non-ideal physical device (see Ideal and real op-amps for comparison). Logic gates are primarily implemented using diodes or transistors acting as electronic switches, but can also be constructed using vacuum tubes, electromagnetic relays (relay logic), fluidic logic, pneumatic logic, optics, molecules, or even mechanical elements. Now, most logic gates are made from MOSFETs (metal–oxide–semiconductor field-effect transistors). With amplification, logic gates can be cascaded in the same way that Boolean functions can be composed, allowing the construction of a physical model of all of Boolean logic, and therefore, all of the algorithms and mathem ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Electromagnetic Force
In physics, electromagnetism is an interaction that occurs between particles with electric charge. It is the second-strongest of the four fundamental interactions, after the strong force, and it is the dominant force in the interactions of atoms and molecules. Electromagnetism can be thought of as a combination of electricity and magnetism, two distinct but closely intertwined phenomena. In essence, electric forces occur between any two charged particles, causing an attraction between particles with opposite charges and repulsion between particles with the same charge, while magnetism is an interaction that occurs exclusively between ''moving'' charged particles. These two effects combine to create electromagnetic fields in the vicinity of charge particles, which can exert influence on other particles via the Lorentz force. At high energy, the weak force and electromagnetic force are unified as a single electroweak force. The electromagnetic force is responsible for many ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Electrostatic Deflection
Electrostatic deflection refers to a way for modifying the path of a beam of charged particles by the use of an electric field applied transverse to the path of the particles. The technique is called electro''static'' because the strength and direction of the applied field changes slowly relative to the time it takes for the particles to transit the field, and thus can be considered not to change (be static) for any single particle. Explanation The Lorentz force acts on any charged particle in an electrostatic deflection. Electrostatic deflection uses a special, simplified case of this general effect by limiting the field to an electric field. An electric field applies a force on a particle that is proportional to the strength of the field and to the charge on the particle. The direction of the applied force is the same as the direction of the electric field. For electrostatic deflection, the applied electric field is arranged so that it lies in the plane perpendicular to the ini ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ballistic Conduction
In mesoscopic physics, ballistic conduction (ballistic transport) is the unimpeded flow (or transport) of charge carriers (usually electrons), or energy-carrying particles, over relatively long distances in a material. In general, the resistivity of a material exists because an electron, while moving inside a medium, is scattered by impurities, defects, thermal fluctuations of ions in a crystalline solid, or, generally, by any freely-moving atom/molecule composing a gas or liquid. Without scattering, electrons simply obey Newton's second law of motion at non-relativistic speeds. The mean free path of a particle can be described as the average length that the particle can travel freely, i.e., before a collision, which could change its momentum. The mean free path can be increased by reducing the number of impurities in a crystal or by lowering its temperature. Ballistic transport is observed when the mean free path of the particle is (much) longer than the dimension of the medium ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Adiabatic Circuit
Adiabatic circuits are low-power electronic circuits which use " reversible logic" to conserve energy. The term " adiabatic" refers to an ideal thermodynamic process in which no heat or mass is exchanged with the surrounding environment, alluding to the ability of the circuits to reduce energy loss as heat. Unlike traditional CMOS circuits, which dissipate energy during switching, adiabatic circuits reduce dissipation by following two key rules: * Never turn on a transistor when there is a voltage potential between the source and drain. * Never turn off a transistor when current is flowing through it. Because of the second law of thermodynamics, it is not possible to completely convert energy into useful work. However, the term "adiabatic logic" is used to describe logic families that could theoretically operate without losses. The term "quasi-adiabatic logic" is used to describe logic that operates with a lower power than static CMOS logic, but which still has some theoreti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Field-effect Transistor
The field-effect transistor (FET) is a type of transistor that uses an electric field to control the flow of current in a semiconductor. FETs (JFETs or MOSFETs) are devices with three terminals: ''source'', ''gate'', and ''drain''. FETs control the flow of current by the application of a voltage to the gate, which in turn alters the conductivity between the drain and source. FETs are also known as unipolar transistors since they involve single-carrier-type operation. That is, FETs use either electrons (n-channel) or holes (p-channel) as charge carriers in their operation, but not both. Many different types of field effect transistors exist. Field effect transistors generally display very high input impedance at low frequencies. The most widely used field-effect transistor is the MOSFET (metal-oxide-semiconductor field-effect transistor). History The concept of a field-effect transistor (FET) was first patented by Austro-Hungarian physicist Julius Edgar Lilienfeld in 192 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Metal-insulator-metal
Metal-insulator-metal (MIM) diode is a type of nonlinear device very similar to a semiconductor diode that is capable of very fast operation. Depending on the geometry and the material used for fabrication, the operation mechanisms are governed either by quantum tunnelling or thermal activation. In 1948, Torrey et al. stated that "It should be possible to make metal-insulator-metal rectifiers with much smaller spreading resistances than metal-semiconductor rectifiers have, consequently giving greater rectification efficiency at high frequencies". But due to fabrication difficulties, two decades passed before the first device could be successfully created. Some of the very first MIM diodes to be fabricated came from Bell Labs in the late 1960s and early 1970s Brinkman et al. demonstrated the first zero-bias MIM tunneling diode with significant responsivity. When they are using tunneling transport, the MIM diode can be very fast. As soon as 1974, this diode was reportedly used as a mi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Superconducting Computing
Superconducting logic refers to a class of logic circuits or logic gates that use the unique properties of superconductors, including zero-resistance wires, ultrafast Josephson junction switches, and quantization of magnetic flux (fluxoid). Superconducting computing is a form of cryogenic computing, as superconductive electronic circuits require cooling to cryogenic temperatures for operation, typically below 10 kelvin. Often superconducting computing is applied to quantum computing, with an important application known as superconducting quantum computing. Superconducting digital logic circuits use single flux quanta (SFQ), also known as magnetic flux quanta, to encode, process, and transport data. SFQ circuits are made up of active Josephson junctions and passive elements such as inductors, resistors, transformers, and transmission lines. Whereas voltages and capacitors are important in semiconductor logic circuits such as CMOS, currents and inductors are most important i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cornell Nanofabrication Facility
Cornell University is a private statutory land-grant research university based in Ithaca, New York. It is a member of the Ivy League. Founded in 1865 by Ezra Cornell and Andrew Dickson White, Cornell was founded with the intention to teach and make contributions in all fields of knowledge—from the classics to the sciences, and from the theoretical to the applied. These ideals, unconventional for the time, are captured in Cornell's founding principle, a popular 1868 quotation from founder Ezra Cornell: "I would found an institution where any person can find instruction in any study." Cornell is ranked among the top global universities. The university is organized into seven undergraduate colleges and seven graduate divisions at its main Ithaca campus, with each college and division defining its specific admission standards and academic programs in near autonomy. The university also administers three satellite campuses, two in New York City and one in Education ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Two-dimensional Electron Gas
A two-dimensional electron gas (2DEG) is a scientific model in solid-state physics. It is an electron gas that is free to move in two dimensions, but tightly confined in the third. This tight confinement leads to quantized energy levels for motion in the third direction, which can then be ignored for most problems. Thus the electrons appear to be a 2D sheet embedded in a 3D world. The analogous construct of holes is called a two-dimensional hole gas (2DHG), and such systems have many useful and interesting properties. Realizations Most 2DEGs are found in transistor-like structures made from semiconductors. The most commonly encountered 2DEG is the layer of electrons found in MOSFETs (metal-oxide-semiconductor field-effect transistors). When the transistor is in inversion mode, the electrons underneath the gate oxide are confined to the semiconductor-oxide interface, and thus occupy well defined energy levels. For thin-enough potential wells and temperatures not too high, only ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Beam Deflection Tube
Beam deflection tubes, sometimes known as sheet beam tubes, are vacuum tubes with an electron gun, a beam intensity control grid, a screen grid, sometimes a suppressor grid, and two electrostatic deflection electrodes on opposite sides of the electron beam, that can direct the rectangular beam to either of two anodes in the same plane. They can be used as two-quadrant, single-balanced mixers or (de)modulators with very linear qualities, their mode of operation similar to one-half of a Gilbert Cell, by applying an unbalanced signal to the control grid and a balanced signal to the deflection electrodes, then extracting the balanced mixing products and from the two anodes. Similar to a pentagrid converter, the cathode and the first two grids can be made into an oscillator. Two beam deflection tubes can be combined to form a double-balanced mixer. They need extensive shielding against external magnetic fields. The ballistic deflection transistors currently under development ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]