HOME
*



picture info

Bahtinov Mask
The Bahtinov mask is a device used to focus small astronomical telescopes accurately. Although masks have long been used as focusing aids, the distinctive pattern was invented by Russian amateur astrophotographer Pavel Bahtinov (russian: Павел Бахтинов) in 2005. Precise focusing of telescopes and astrographs is critical to performing astrophotography. The telescope is pointed at a bright star, and a mask is placed in front of the telescope's objective (or in front of the aperture). The mask consists of three separate grids, positioned in such a way that the grids produce three angled diffraction spikes at the focal plane of the instrument for each bright image element. As the instrument's focus is changed, the central spike appears to move from one side of the star to the other. In reality, all three spikes move, but the central spike moves in the opposite direction to the two spikes forming the "X". Optimal focus is achieved when the middle spike is centered betwe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bahtinov Mask
The Bahtinov mask is a device used to focus small astronomical telescopes accurately. Although masks have long been used as focusing aids, the distinctive pattern was invented by Russian amateur astrophotographer Pavel Bahtinov (russian: Павел Бахтинов) in 2005. Precise focusing of telescopes and astrographs is critical to performing astrophotography. The telescope is pointed at a bright star, and a mask is placed in front of the telescope's objective (or in front of the aperture). The mask consists of three separate grids, positioned in such a way that the grids produce three angled diffraction spikes at the focal plane of the instrument for each bright image element. As the instrument's focus is changed, the central spike appears to move from one side of the star to the other. In reality, all three spikes move, but the central spike moves in the opposite direction to the two spikes forming the "X". Optimal focus is achieved when the middle spike is centered betwe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Focal Plane
In Gaussian optics, the cardinal points consist of three pairs of points located on the optical axis of a rotationally symmetric, focal, optical system. These are the '' focal points'', the principal points, and the nodal points. For ''ideal'' systems, the basic imaging properties such as image size, location, and orientation are completely determined by the locations of the cardinal points; in fact only four points are necessary: the focal points and either the principal or nodal points. The only ideal system that has been achieved in practice is the plane mirror, however the cardinal points are widely used to ''approximate'' the behavior of real optical systems. Cardinal points provide a way to analytically simplify a system with many components, allowing the imaging characteristics of the system to be approximately determined with simple calculations. Explanation The cardinal points lie on the optical axis of the optical system. Each point is defined by the effect the opti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Ronchi Ruling
A Ronchi ruling, Ronchi grating, or Ronchi mask, named after the Italian physicist Vasco Ronchi, is a constant-interval bar and space square-wave optical target or mask. The design produces a precisely patterned light source by reflection or illumination, or a stop pattern by transmission, with precise uniformity, spatial frequency, sharp edge definition, and high contrast ratio. Manufacturing Ronchi rulings are typically manufactured through photolithographic deposition of metallic chromium on a substrate, which yields a precise, nearly 100% contrast pattern. For a reflective or illuminated type, dark stripes are printed on a diffusely reflecting or translucent substrate, such as a square of white ceramic material or opal glass. For a transmissive type, opaque stripes are printed on a transparent glass substrate. A transmissive type may be readily modified to act as an illuminated type by stacking a reflective object behind it. Applications A test target in the Ronchi patter ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hartmann Mask
Hartmann mask is a tool to help focusing telescopes, mainly used by amateur astronomers. It is named after the German astronomer Johannes Franz Hartmann (1865–1936), who developed it around 1900. Theory and practice Every part of a mirror or lens produces the same image as the whole optical element. The light is focused in the focal point. The light rays, however, go through different points of a plane before or behind the focus. This phenomenon can be used when focusing a telescope. The Hartmann mask is a simple opaque mask containing two or three holes. (This device is called a Hartmann mask if it has multiple holes, or a Scheiner disk if it has two holes.) The mask covers the aperture of the telescope. When the apparatus is out of focus, multiple images can be seen if the telescope is pointed towards a bright light source (Moon, bright star). Adjusting the focuser, the images can be made to overlap, forming a single bright, clear picture. The mask may also be used to che ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Carey Mask
A Carey mask (named after the inventor, George F. Carey) is a focusing aid for astronomical telescopes. The mask is in the form of a thin card or sheet that is placed over the front aperture of the telescope. There are four series of slits in the mask which form a diffraction pattern in the image plane. In this example the two sets of slits on the left are angled at 12 degrees to each other. Those on the right are angled at 10 degrees to each other. Different telescope and imaging combinations may require slightly different angles. The diffraction pattern caused by the left hand slits will be in the form of an 'X'. The right hand slits will also form an 'X' shape, but the lines forming the 'X' will cross at a narrower angle. When perfect focus is achieved the two 'X's will be superimposed and be perfectly symmetrical. Any slight error in focus will cause the 'X's to be offset, and this is very noticeable to the naked eye. In the example images below, focus error is obvious i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Airy Disk
In optics, the Airy disk (or Airy disc) and Airy pattern are descriptions of the best- focused spot of light that a perfect lens with a circular aperture can make, limited by the diffraction of light. The Airy disk is of importance in physics, optics, and astronomy. The diffraction pattern resulting from a uniformly illuminated, circular aperture has a bright central region, known as the Airy disk, which together with the series of concentric rings around is called the Airy pattern. Both are named after George Biddell Airy. The disk and rings phenomenon had been known prior to Airy; John Herschel described the appearance of a bright star seen through a telescope under high magnification for an 1828 article on light for the ''Encyclopedia Metropolitana'': Airy wrote the first full theoretical treatment explaining the phenomenon (his 1835 "On the Diffraction of an Object-glass with Circular Aperture"). Mathematically, the diffraction pattern is characterized by the wavelen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fraunhofer Diffraction
In optics, the Fraunhofer diffraction equation is used to model the diffraction of waves when plane waves are incident on a diffracting object, and the diffraction pattern is viewed at a sufficiently long distance (a distance satisfying Fraunhofer condition) from the object (in the far-field region), and also when it is viewed at the focal plane of an imaging lens. In contrast, the diffraction pattern created near the diffracting object (in the near field region) is given by the Fresnel diffraction equation. The equation was named in honor of Joseph von Fraunhofer although he was not actually involved in the development of the theory. This article explains where the Fraunhofer equation can be applied, and shows Fraunhofer diffraction patterns for various apertures. A detailed mathematical treatment of Fraunhofer diffraction is given in Fraunhofer diffraction equation. Equation When a beam of light is partly blocked by an obstacle, some of the light is scattered around the o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Aperture Stop
In optics, an aperture is a hole or an opening through which light travels. More specifically, the aperture and focal length of an optical system determine the cone angle of a bundle of rays that come to a focus in the image plane. An optical system typically has many openings or structures that limit the ray bundles (ray bundles are also known as ''pencils'' of light). These structures may be the edge of a lens or mirror, or a ring or other fixture that holds an optical element in place, or may be a special element such as a diaphragm placed in the optical path to limit the light admitted by the system. In general, these structures are called stops, and the aperture stop is the stop that primarily determines the ray cone angle and brightness at the image point. In some contexts, especially in photography and astronomy, ''aperture'' refers to the diameter of the aperture stop rather than the physical stop or the opening itself. For example, in a telescope, the aperture ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Diffraction
Diffraction is defined as the interference or bending of waves around the corners of an obstacle or through an aperture into the region of geometrical shadow of the obstacle/aperture. The diffracting object or aperture effectively becomes a secondary source of the propagating wave. Italian scientist Francesco Maria Grimaldi coined the word ''diffraction'' and was the first to record accurate observations of the phenomenon in 1660. In classical physics, the diffraction phenomenon is described by the Huygens–Fresnel principle that treats each point in a propagating wavefront as a collection of individual spherical wavelets. The characteristic bending pattern is most pronounced when a wave from a coherent source (such as a laser) encounters a slit/aperture that is comparable in size to its wavelength, as shown in the inserted image. This is due to the addition, or interference, of different points on the wavefront (or, equivalently, each wavelet) that travel by paths of d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Objective (optics)
In optical engineering, the objective is the optical element that gathers light from the object being observed and focuses the light rays to produce a real image. Objectives can be a single lens or mirror, or combinations of several optical elements. They are used in microscopes, binoculars, telescopes, cameras, slide projectors, CD players and many other optical instruments. Objectives are also called object lenses, object glasses, or objective glasses. Microscope objectives The objective lens of a microscope is the one at the bottom near the sample. At its simplest, it is a very high-powered magnifying glass, with very short focal length. This is brought very close to the specimen being examined so that the light from the specimen comes to a focus inside the microscope tube. The objective itself is usually a cylinder containing one or more lenses that are typically made of glass; its function is to collect light from the sample. Magnification One of the most important prope ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Star
A star is an astronomical object comprising a luminous spheroid of plasma (physics), plasma held together by its gravity. The List of nearest stars and brown dwarfs, nearest star to Earth is the Sun. Many other stars are visible to the naked eye at night sky, night, but their immense distances from Earth make them appear as fixed stars, fixed points of light. The most prominent stars have been categorised into constellations and asterism (astronomy), asterisms, and many of the brightest stars have proper names. Astronomers have assembled star catalogues that identify the known stars and provide standardized stellar designations. The observable universe contains an estimated to stars. Only about 4,000 of these stars are visible to the naked eye, all within the Milky Way galaxy. A star's life star formation, begins with the gravitational collapse of a gaseous nebula of material composed primarily of hydrogen, along with helium and trace amounts of heavier elements. Its stellar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]