Aztec Diamond
   HOME
*



picture info

Aztec Diamond
In combinatorial mathematics, an Aztec diamond of order ''n'' consists of all squares of a square lattice whose centers (''x'',''y'') satisfy , ''x'', + , ''y'', ≤ ''n''. Here ''n'' is a fixed integer, and the square lattice consists of unit squares with the origin as a vertex of 4 of them, so that both ''x'' and ''y'' are half-integers. The Aztec diamond theorem states that the number of domino tilings of the Aztec diamond of order ''n'' is 2''n''(''n''+1)/2. The Arctic Circle theorem says that a random tiling of a large Aztec diamond tends to be frozen outside a certain circle. It is common to color the tiles in the following fashion. First consider a checkerboard coloring of the diamond. Each tile will cover exactly one black square. Vertical tiles where the top square covers a black square, is colored in one color, and the other vertical tiles in a second. Similarly for horizontal tiles. Knuth has also defined Aztec diamonds of order ''n'' + 1/2. They are identical wit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Diamant Azteque
The Diamant rocket (French for "diamond") was the first exclusively French expendable launch system and at the same time the first satellite launcher not built by either the United States or USSR. As such, it has been referred to as being a key predecessor for all subsequent European launcher projects. During 1962, development of the Diamant commenced as the inaugural spacecraft project of France's space agency, the CNES, Centre National d'Études Spatiales (CNES). As a project, it was derived from the military program ''Pierres précieuses'' (fr.: gemstones) that included the five prototypes Agate (rocket), Agate, Topaze (rocket), Topaze, Emeraude (rocket), Emeraude, Rubis (rocket), Rubis and Saphir (rocket), Saphir (Agate, Topaz, Emerald, Ruby and Sapphire), and drew heavily upon the knowledge and technologies that had been previously developed. On 26 November 1965, the Diamant A performed its maiden flight. Out of a total of 12 launch attempts to be performed between 1965 and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Schröder Number
In mathematics, the Schröder number S_n, also called a ''large Schröder number'' or ''big Schröder number'', describes the number of lattice paths from the southwest corner (0,0) of an n \times n grid to the northeast corner (n,n), using only single steps north, (0,1); northeast, (1,1); or east, (1,0), that do not rise above the SW–NE diagonal. The first few Schröder numbers are :1, 2, 6, 22, 90, 394, 1806, 8558, ... . where S_0=1 and S_1=2. They were named after the German mathematician Ernst Schröder. Examples The following figure shows the 6 such paths through a 2 \times 2 grid: Related constructions A Schröder path of length n is a lattice path from (0,0) to (2n,0) with steps northeast, (1,1); east, (2,0); and southeast, (1,-1), that do not go below the x-axis. The nth Schröder number is the number of Schröder paths of length n. The following figure shows the 6 Schröder paths of length 2. Similarly, the Schröder numbers count the number of ways to divi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Set Cover Problem
The set cover problem is a classical question in combinatorics, computer science, operations research, and complexity theory. It is one of Karp's 21 NP-complete problems shown to be NP-complete in 1972. Given a set of elements (called the universe) and a collection of sets whose union equals the universe, the set cover problem is to identify the smallest sub-collection of whose union equals the universe. For example, consider the universe and the collection of sets Clearly the union of is . However, we can cover all of the elements with the following, smaller number of sets: More formally, given a universe \mathcal and a family \mathcal of subsets of \mathcal, a ''cover'' is a subfamily \mathcal\subseteq\mathcal of sets whose union is \mathcal. In the set covering decision problem, the input is a pair (\mathcal,\mathcal) and an integer k; the question is whether there is a set covering of size k or less. In the set covering optimization problem, the input is a pair (\ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Domino Tiling
In geometry, a domino tiling of a region in the Euclidean plane is a tessellation of the region by dominoes, shapes formed by the union of two unit squares meeting edge-to-edge. Equivalently, it is a perfect matching in the grid graph formed by placing a vertex at the center of each square of the region and connecting two vertices when they correspond to adjacent squares. Height functions For some classes of tilings on a regular grid in two dimensions, it is possible to define a height function associating an integer to the vertices of the grid. For instance, draw a chessboard, fix a node A_0 with height 0, then for any node there is a path from A_0 to it. On this path define the height of each node A_ (i.e. corners of the squares) to be the height of the previous node A_n plus one if the square on the right of the path from A_n to A_ is black, and minus one otherwise. More details can be found in . Thurston's height condition describes a test for determining whether a simply- ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematical Induction
Mathematical induction is a method for proving that a statement ''P''(''n'') is true for every natural number ''n'', that is, that the infinitely many cases ''P''(0), ''P''(1), ''P''(2), ''P''(3), ...  all hold. Informal metaphors help to explain this technique, such as falling dominoes or climbing a ladder: A proof by induction consists of two cases. The first, the base case, proves the statement for ''n'' = 0 without assuming any knowledge of other cases. The second case, the induction step, proves that ''if'' the statement holds for any given case ''n'' = ''k'', ''then'' it must also hold for the next case ''n'' = ''k'' + 1. These two steps establish that the statement holds for every natural number ''n''. The base case does not necessarily begin with ''n'' = 0, but often with ''n'' = 1, and possibly with any fixed natural number ''n'' = ''N'', establishing the truth of the statement for all natu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fibonacci Number
In mathematics, the Fibonacci numbers, commonly denoted , form a sequence, the Fibonacci sequence, in which each number is the sum of the two preceding ones. The sequence commonly starts from 0 and 1, although some authors start the sequence from 1 and 1 or sometimes (as did Fibonacci) from 1 and 2. Starting from 0 and 1, the first few values in the sequence are: :0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144. The Fibonacci numbers were first described in Indian mathematics, as early as 200 BC in work by Pingala on enumerating possible patterns of Sanskrit poetry formed from syllables of two lengths. They are named after the Italian mathematician Leonardo of Pisa, later known as Fibonacci, who introduced the sequence to Western European mathematics in his 1202 book ''Liber Abaci''. Fibonacci numbers appear unexpectedly often in mathematics, so much so that there is an entire journal dedicated to their study, the ''Fibonacci Quarterly''. Applications of Fibonacci numbers include co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Matrix (mathematics)
In mathematics, a matrix (plural matrices) is a rectangular array or table of numbers, symbols, or expressions, arranged in rows and columns, which is used to represent a mathematical object or a property of such an object. For example, \begin1 & 9 & -13 \\20 & 5 & -6 \end is a matrix with two rows and three columns. This is often referred to as a "two by three matrix", a "-matrix", or a matrix of dimension . Without further specifications, matrices represent linear maps, and allow explicit computations in linear algebra. Therefore, the study of matrices is a large part of linear algebra, and most properties and operations of abstract linear algebra can be expressed in terms of matrices. For example, matrix multiplication represents composition of linear maps. Not all matrices are related to linear algebra. This is, in particular, the case in graph theory, of incidence matrices, and adjacency matrices. ''This article focuses on matrices related to linear algebra, and, unle ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hankel Matrix
In linear algebra, a Hankel matrix (or catalecticant matrix), named after Hermann Hankel, is a square matrix in which each ascending skew-diagonal from left to right is constant, e.g.: \qquad\begin a & b & c & d & e \\ b & c & d & e & f \\ c & d & e & f & g \\ d & e & f & g & h \\ e & f & g & h & i \\ \end. More generally, a Hankel matrix is any n \times n matrix A of the form A = \begin a_ & a_ & a_ & \ldots & \ldots &a_ \\ a_ & a_2 & & & &\vdots \\ a_ & & & & & \vdots \\ \vdots & & & & & a_\\ \vdots & & & & a_& a_ \\ a_ & \ldots & \ldots & a_ & a_ & a_ \end. In terms of the components, if the i,j element of A is denoted with A_, and assuming i\le j, then we have A_ = A_ for all k = 0,...,j-i. Properties * The Hankel matrix is a symmetric matrix. * Let J_n be the n \times n exchange matrix. If H is a m \times n Hankel matrix, then H = T J_n where T is a m \times n Toeplitz matrix. ** If T is real symmetric, then H = T J_n will have the same eigenvalues as T ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Determinant
In mathematics, the determinant is a scalar value that is a function of the entries of a square matrix. It characterizes some properties of the matrix and the linear map represented by the matrix. In particular, the determinant is nonzero if and only if the matrix is invertible and the linear map represented by the matrix is an isomorphism. The determinant of a product of matrices is the product of their determinants (the preceding property is a corollary of this one). The determinant of a matrix is denoted , , or . The determinant of a matrix is :\begin a & b\\c & d \end=ad-bc, and the determinant of a matrix is : \begin a & b & c \\ d & e & f \\ g & h & i \end= aei + bfg + cdh - ceg - bdi - afh. The determinant of a matrix can be defined in several equivalent ways. Leibniz formula expresses the determinant as a sum of signed products of matrix entries such that each summand is the product of different entries, and the number of these summands is n!, the factorial of (t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bijection
In mathematics, a bijection, also known as a bijective function, one-to-one correspondence, or invertible function, is a function between the elements of two sets, where each element of one set is paired with exactly one element of the other set, and each element of the other set is paired with exactly one element of the first set. There are no unpaired elements. In mathematical terms, a bijective function is a one-to-one (injective) and onto (surjective) mapping of a set ''X'' to a set ''Y''. The term ''one-to-one correspondence'' must not be confused with ''one-to-one function'' (an injective function; see figures). A bijection from the set ''X'' to the set ''Y'' has an inverse function from ''Y'' to ''X''. If ''X'' and ''Y'' are finite sets, then the existence of a bijection means they have the same number of elements. For infinite sets, the picture is more complicated, leading to the concept of cardinal number—a way to distinguish the various sizes of infinite sets. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Adjacency Matrix
In graph theory and computer science, an adjacency matrix is a square matrix used to represent a finite graph. The elements of the matrix indicate whether pairs of vertices are adjacent or not in the graph. In the special case of a finite simple graph, the adjacency matrix is a (0,1)-matrix with zeros on its diagonal. If the graph is undirected (i.e. all of its edges are bidirectional), the adjacency matrix is symmetric. The relationship between a graph and the eigenvalues and eigenvectors of its adjacency matrix is studied in spectral graph theory. The adjacency matrix of a graph should be distinguished from its incidence matrix, a different matrix representation whose elements indicate whether vertex–edge pairs are incident or not, and its degree matrix, which contains information about the degree of each vertex. Definition For a simple graph with vertex set , the adjacency matrix is a square matrix such that its element is one when there is an edge from vertex to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]