Arithmetic Surface
   HOME
*





Arithmetic Surface
In mathematics, an arithmetic surface over a Dedekind domain ''R'' with fraction field K is a geometric object having one conventional dimension, and one other dimension provided by the infinitude of the primes. When ''R'' is the ring of integers ''Z'', this intuition depends on the prime ideal spectrum Spec(''Z'') being seen as analogous to a line. Arithmetic surfaces arise naturally in diophantine geometry, when an algebraic curve defined over ''K'' is thought of as having reductions over the fields ''R''/''P'', where ''P'' is a prime ideal of ''R'', for almost all ''P''; and are helpful in specifying what should happen about the process of reducing to ''R''/''P'' when the most naive way fails to make sense. Such an object can be defined more formally as an R-scheme with a non-singular, connected projective curve C/K for a generic fiber and unions of curves (possibly reducible, singular, non-reduced ) over the appropriate residue field for special fibers. Formal definition I ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dedekind Domain
In abstract algebra, a Dedekind domain or Dedekind ring, named after Richard Dedekind, is an integral domain in which every nonzero proper ideal factors into a product of prime ideals. It can be shown that such a factorization is then necessarily unique up to the order of the factors. There are at least three other characterizations of Dedekind domains that are sometimes taken as the definition: see below. A field is a commutative ring in which there are no nontrivial proper ideals, so that any field is a Dedekind domain, however in a rather vacuous way. Some authors add the requirement that a Dedekind domain not be a field. Many more authors state theorems for Dedekind domains with the implicit proviso that they may require trivial modifications for the case of fields. An immediate consequence of the definition is that every principal ideal domain (PID) is a Dedekind domain. In fact a Dedekind domain is a unique factorization domain (UFD) if and only if it is a PID. Th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Flat Morphism
In mathematics, in particular in the theory of schemes in algebraic geometry, a flat morphism ''f'' from a scheme ''X'' to a scheme ''Y'' is a morphism such that the induced map on every stalk is a flat map of rings, i.e., :f_P\colon \mathcal_ \to \mathcal_ is a flat map for all ''P'' in ''X''. A map of rings A\to B is called flat if it is a homomorphism that makes ''B'' a flat ''A''-module. A morphism of schemes is called faithfully flat if it is both surjective and flat. Two basic intuitions regarding flat morphisms are: *flatness is a generic property; and *the failure of flatness occurs on the jumping set of the morphism. The first of these comes from commutative algebra: subject to some finiteness conditions on ''f'', it can be shown that there is a non-empty open subscheme Y' of ''Y'', such that ''f'' restricted to ''Y''′ is a flat morphism (generic flatness). Here 'restriction' is interpreted by means of the fiber product of schemes, applied to ''f'' and the inclusio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Oxford University Press
Oxford University Press (OUP) is the university press of the University of Oxford. It is the largest university press in the world, and its printing history dates back to the 1480s. Having been officially granted the legal right to print books by decree in 1586, it is the second oldest university press after Cambridge University Press. It is a department of the University of Oxford and is governed by a group of 15 academics known as the Delegates of the Press, who are appointed by the vice-chancellor of the University of Oxford. The Delegates of the Press are led by the Secretary to the Delegates, who serves as OUP's chief executive and as its major representative on other university bodies. Oxford University Press has had a similar governance structure since the 17th century. The press is located on Walton Street, Oxford, opposite Somerville College, in the inner suburb of Jericho. For the last 500 years, OUP has primarily focused on the publication of pedagogical texts and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Springer-Verlag
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second largest academic publisher with 65 staff in 1872.Chronology
". Springer Science+Business Media.
In 1964, Springer expanded its business internationally, o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Graduate Texts In Mathematics
Graduate Texts in Mathematics (GTM) (ISSN 0072-5285) is a series of graduate-level textbooks in mathematics published by Springer-Verlag. The books in this series, like the other Springer-Verlag mathematics series, are yellow books of a standard size (with variable numbers of pages). The GTM series is easily identified by a white band at the top of the book. The books in this series tend to be written at a more advanced level than the similar Undergraduate Texts in Mathematics series, although there is a fair amount of overlap between the two series in terms of material covered and difficulty level. List of books #''Introduction to Axiomatic Set Theory'', Gaisi Takeuti, Wilson M. Zaring (1982, 2nd ed., ) #''Measure and Category – A Survey of the Analogies between Topological and Measure Spaces'', John C. Oxtoby (1980, 2nd ed., ) #''Topological Vector Spaces'', H. H. Schaefer, M. P. Wolff (1999, 2nd ed., ) #''A Course in Homological Algebra'', Peter Hilton, Urs Stammbac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Glossary Of Arithmetic And Diophantine Geometry
This is a glossary of arithmetic and diophantine geometry in mathematics, areas growing out of the traditional study of Diophantine equations to encompass large parts of number theory and algebraic geometry. Much of the theory is in the form of proposed conjectures, which can be related at various levels of generality. Diophantine geometry in general is the study of algebraic varieties ''V'' over fields ''K'' that are finitely generated over their prime fields—including as of special interest number fields and finite fields—and over local fields. Of those, only the complex numbers are algebraically closed; over any other ''K'' the existence of points of ''V'' with coordinates in ''K'' is something to be proved and studied as an extra topic, even knowing the geometry of ''V''. Arithmetic geometry can be more generally defined as the study of schemes of finite type over the spectrum of the ring of integers. Arithmetic geometry has also been defined as the application of the tech ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Archimedean Absolute Value
In algebra, an absolute value (also called a valuation, magnitude, or norm, although "norm" usually refers to a specific kind of absolute value on a field) is a function which measures the "size" of elements in a field or integral domain. More precisely, if ''D'' is an integral domain, then an absolute value is any mapping , x, from ''D'' to the real numbers R satisfying: It follows from these axioms that , 1,  = 1 and , -1,  = 1. Furthermore, for every positive integer ''n'', :, ''n'',  = , 1 + 1 + ... + 1 (''n'' times),  = , −1 − 1 − ... − 1 (''n'' times),  ≤ ''n''. The classical " absolute value" is one in which, for example, , 2, =2, but many other functions fulfill the requirements stated above, for instance the square root of the classical absolute value (but not the square thereof). An absolute value induces a metric (and thus a topology) by d(f,g) = ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Arakelov Theory
In mathematics, Arakelov theory (or Arakelov geometry) is an approach to Diophantine geometry, named for Suren Arakelov. It is used to study Diophantine equations in higher dimensions. Background The main motivation behind Arakelov geometry is the fact there is a correspondence between prime ideals \mathfrak \in \text(\mathbb) and finite places v_p : \mathbb^* \to \mathbb, but there also exists a place at infinity v_\infty, given by the Archimedean valuation, which doesn't have a corresponding prime ideal. Arakelov geometry gives a technique for compactifying \text(\mathbb) into a complete space \overline which has a prime lying at infinity. Arakelov's original construction studies one such theory, where a definition of divisors is constructor for a scheme \mathfrak of relative dimension 1 over \text(\mathcal_K) such that it extends to a Riemann surface X_\infty = \mathfrak(\mathbb) for every valuation at infinity. In addition, he equips these Riemann surfaces with Hermitian me ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Elliptic Fibration
In mathematics, an elliptic surface is a surface that has an elliptic fibration, in other words a proper morphism with connected fibers to an algebraic curve such that almost all fibers are smooth curves of genus 1. (Over an algebraically closed field such as the complex numbers, these fibers are elliptic curves, perhaps without a chosen origin.) This is equivalent to the generic fiber being a smooth curve of genus one. This follows from proper base change. The surface and the base curve are assumed to be non-singular ( complex manifolds or regular schemes, depending on the context). The fibers that are not elliptic curves are called the singular fibers and were classified by Kunihiko Kodaira. Both elliptic and singular fibers are important in string theory, especially in F-theory. Elliptic surfaces form a large class of surfaces that contains many of the interesting examples of surfaces, and are relatively well understood in the theories of complex manifolds and smooth 4-manifo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Global Field
In mathematics, a global field is one of two type of fields (the other one is local field) which are characterized using valuations. There are two kinds of global fields: * Algebraic number field: A finite extension of \mathbb *Global function field: The function field of an algebraic curve over a finite field, equivalently, a finite extension of \mathbb_q(T), the field of rational functions in one variable over the finite field with q=p^n elements. An axiomatic characterization of these fields via valuation theory was given by Emil Artin and George Whaples in the 1940s. Formal definitions A ''global field'' is one of the following: ;An algebraic number field An algebraic number field ''F'' is a finite (and hence algebraic) field extension of the field of rational numbers Q. Thus ''F'' is a field that contains Q and has finite dimension when considered as a vector space over Q. ;The function field of an algebraic curve over a finite field A function field of a variety is t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Elliptic Curve
In mathematics, an elliptic curve is a smooth, projective, algebraic curve of genus one, on which there is a specified point . An elliptic curve is defined over a field and describes points in , the Cartesian product of with itself. If the field's characteristic is different from 2 and 3, then the curve can be described as a plane algebraic curve which consists of solutions for: :y^2 = x^3 + ax + b for some coefficients and in . The curve is required to be non-singular, which means that the curve has no cusps or self-intersections. (This is equivalent to the condition , that is, being square-free in .) It is always understood that the curve is really sitting in the projective plane, with the point being the unique point at infinity. Many sources define an elliptic curve to be simply a curve given by an equation of this form. (When the coefficient field has characteristic 2 or 3, the above equation is not quite general enough to include all non-singular cubic cu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Néron Model
In algebraic geometry, the Néron model (or Néron minimal model, or minimal model) for an abelian variety ''AK'' defined over the field of fractions ''K'' of a Dedekind domain ''R'' is the "push-forward" of ''AK'' from Spec(''K'') to Spec(''R''), in other words the "best possible" group scheme ''AR'' defined over ''R'' corresponding to ''AK''. They were introduced by for abelian varieties over the quotient field of a Dedekind domain ''R'' with perfect residue fields, and extended this construction to semiabelian varieties over all Dedekind domains. Definition Suppose that ''R'' is a Dedekind domain with field of fractions ''K'', and suppose that ''AK'' is a smooth separated scheme over ''K'' (such as an abelian variety). Then a Néron model of ''AK'' is defined to be a smooth separated scheme ''AR'' over ''R'' with fiber ''AK'' that is universal in the following sense. :If ''X'' is a smooth separated scheme over ''R'' then any ''K''-morphism from ''X''''K'' to ''AK'' ca ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]