HOME
*



picture info

Area Of A Circle
In geometry, the area enclosed by a circle of radius is . Here the Greek letter represents the constant ratio of the circumference of any circle to its diameter, approximately equal to 3.14159. One method of deriving this formula, which originated with Archimedes, involves viewing the circle as the limit of a sequence of regular polygons. The area of a regular polygon is half its perimeter multiplied by the distance from its center to its sides, and the corresponding formula–that the area is half the perimeter times the radius–namely, , holds in the limit for a circle. Although often referred to as the ''area of a circle'' in informal contexts, strictly speaking the term '' disk'' refers to the interior region of the circle, while ''circle'' is reserved for the boundary only, which is a curve and covers no area itself. Therefore, the ''area of a disk'' is the more precise phrase for the area enclosed by a circle. History Modern mathematics can obtain the a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Geometry
Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is called a '' geometer''. Until the 19th century, geometry was almost exclusively devoted to Euclidean geometry, which includes the notions of point, line, plane, distance, angle, surface, and curve, as fundamental concepts. During the 19th century several discoveries enlarged dramatically the scope of geometry. One of the oldest such discoveries is Carl Friedrich Gauss' ("remarkable theorem") that asserts roughly that the Gaussian curvature of a surface is independent from any specific embedding in a Euclidean space. This implies that surfaces can be studied ''intrinsically'', that is, as stand-alone spaces, and has been expanded into the theory of manifolds and Riemannian geometry. Later in the 19th century, it appeared that ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Eudoxus Of Cnidus
Eudoxus of Cnidus (; grc, Εὔδοξος ὁ Κνίδιος, ''Eúdoxos ho Knídios''; ) was an ancient Greek astronomer, mathematician, scholar, and student of Archytas and Plato. All of his original works are lost, though some fragments are preserved in Hipparchus' commentary on Aratus's poem on astronomy. '' Sphaerics'' by Theodosius of Bithynia may be based on a work by Eudoxus. Life Eudoxus was born and died in Cnidus (also spelled Knidos), which was a city on the southwest coast of Asia Minor. The years of Eudoxus' birth and death are not fully known but the range may have been , or . His name Eudoxus means "honored" or "of good repute" (, from ''eu'' "good" and ''doxa'' "opinion, belief, fame"). It is analogous to the Latin name Benedictus. Eudoxus's father, Aeschines of Cnidus, loved to watch stars at night. Eudoxus first traveled to Tarentum to study with Archytas, from whom he learned mathematics. While in Italy, Eudoxus visited Sicily, where he studied medi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Archimedes Circle Area Proof - Circumscribed Polygons
Archimedes of Syracuse (;; ) was a Greek mathematician, physicist, engineer, astronomer, and inventor from the ancient city of Syracuse in Sicily. Although few details of his life are known, he is regarded as one of the leading scientists in classical antiquity. Considered the greatest mathematician of ancient history, and one of the greatest of all time,* * * * * * * * * * Archimedes anticipated modern calculus and analysis by applying the concept of the infinitely small and the method of exhaustion to derive and rigorously prove a range of geometrical theorems. These include the area of a circle, the surface area and volume of a sphere, the area of an ellipse, the area under a parabola, the volume of a segment of a paraboloid of revolution, the volume of a segment of a hyperboloid of revolution, and the area of a spiral. Heath, Thomas L. 1897. ''Works of Archimedes''. Archimedes' other mathematical achievements include deriving an approximation of pi, defining and invest ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Inscribe
{{unreferenced, date=August 2012 An inscribed triangle of a circle In geometry, an inscribed planar shape or solid is one that is enclosed by and "fits snugly" inside another geometric shape or solid. To say that "figure F is inscribed in figure G" means precisely the same thing as "figure G is circumscribed about figure F". A circle or ellipse inscribed in a convex polygon (or a sphere or ellipsoid inscribed in a convex polyhedron) is tangent to every side or face of the outer figure (but see Inscribed sphere for semantic variants). A polygon inscribed in a circle, ellipse, or polygon (or a polyhedron inscribed in a sphere, ellipsoid, or polyhedron) has each vertex on the outer figure; if the outer figure is a polygon or polyhedron, there must be a vertex of the inscribed polygon or polyhedron on each side of the outer figure. An inscribed figure is not necessarily unique in orientation; this can easily be seen, for example, when the given outer figure is a circle, in which case ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Archimedes Circle Area Proof - Inscribed Polygons
Archimedes of Syracuse (;; ) was a Greek mathematician, physicist, engineer, astronomer, and inventor from the ancient city of Syracuse in Sicily. Although few details of his life are known, he is regarded as one of the leading scientists in classical antiquity. Considered the greatest mathematician of ancient history, and one of the greatest of all time,* * * * * * * * * * Archimedes anticipated modern calculus and analysis by applying the concept of the infinitely small and the method of exhaustion to derive and rigorously prove a range of geometrical theorems. These include the area of a circle, the surface area and volume of a sphere, the area of an ellipse, the area under a parabola, the volume of a segment of a paraboloid of revolution, the volume of a segment of a hyperboloid of revolution, and the area of a spiral. Heath, Thomas L. 1897. ''Works of Archimedes''. Archimedes' other mathematical achievements include deriving an approximation of pi, defining and invest ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Real Number System
In mathematics, a real number is a number that can be used to measure a ''continuous'' one- dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every real number can be almost uniquely represented by an infinite decimal expansion. The real numbers are fundamental in calculus (and more generally in all mathematics), in particular by their role in the classical definitions of limits, continuity and derivatives. The set of real numbers is denoted or \mathbb and is sometimes called "the reals". The adjective ''real'' in this context was introduced in the 17th century by René Descartes to distinguish real numbers, associated with physical reality, from imaginary numbers (such as the square roots of ), which seemed like a theoretical contrivance unrelated to physical reality. The real numbers include the rational numbers, such as the integer and the fraction . The rest of th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Archimedean Property
In abstract algebra and analysis, the Archimedean property, named after the ancient Greek mathematician Archimedes of Syracuse, is a property held by some algebraic structures, such as ordered or normed groups, and fields. The property, typically construed, states that given two positive numbers ''x'' and ''y'', there is an integer ''n'' such that ''nx'' > ''y''. It also means that the set of natural numbers is not bounded above. Roughly speaking, it is the property of having no ''infinitely large'' or ''infinitely small'' elements. It was Otto Stolz who gave the axiom of Archimedes its name because it appears as Axiom V of Archimedes’ ''On the Sphere and Cylinder''. The notion arose from the theory of magnitudes of Ancient Greece; it still plays an important role in modern mathematics such as David Hilbert's axioms for geometry, and the theories of ordered groups, ordered fields, and local fields. An algebraic structure in which any two non-zero elements are ''compa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Limit (mathematics)
In mathematics, a limit is the value that a function (or sequence) approaches as the input (or index) approaches some value. Limits are essential to calculus and mathematical analysis, and are used to define continuity, derivatives, and integrals. The concept of a limit of a sequence is further generalized to the concept of a limit of a topological net, and is closely related to limit and direct limit in category theory. In formulas, a limit of a function is usually written as : \lim_ f(x) = L, (although a few authors may use "Lt" instead of "lim") and is read as "the limit of of as approaches equals ". The fact that a function approaches the limit as approaches is sometimes denoted by a right arrow (→ or \rightarrow), as in :f(x) \to L \text x \to c, which reads "f of x tends to L as x tends to c". History Grégoire de Saint-Vincent gave the first definition of limit (terminus) of a geometric series in his work ''Opus Geometricum'' (1647): "The ''terminus'' of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Method Of Exhaustion
The method of exhaustion (; ) is a method of finding the area of a shape by inscribing inside it a sequence of polygons whose areas converge to the area of the containing shape. If the sequence is correctly constructed, the difference in area between the ''n''th polygon and the containing shape will become arbitrarily small as ''n'' becomes large. As this difference becomes arbitrarily small, the possible values for the area of the shape are systematically "exhausted" by the lower bound areas successively established by the sequence members. The method of exhaustion typically required a form of proof by contradiction, known as '' reductio ad absurdum''. This amounts to finding an area of a region by first comparing it to the area of a second region, which can be "exhausted" so that its area becomes arbitrarily close to the true area. The proof involves assuming that the true area is greater than the second area, proving that assertion false, assuming it is less than the seco ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Constant Of Proportionality
In mathematics, two sequences of numbers, often experimental data, are proportional or directly proportional if their corresponding elements have a constant ratio, which is called the coefficient of proportionality or proportionality constant. Two sequences are inversely proportional if corresponding elements have a constant product, also called the coefficient of proportionality. This definition is commonly extended to related varying quantities, which are often called ''variables''. This meaning of ''variable'' is not the common meaning of the term in mathematics (see variable (mathematics)); these two different concepts share the same name for historical reasons. Two functions f(x) and g(x) are ''proportional'' if their ratio \frac is a constant function. If several pairs of variables share the same direct proportionality constant, the equation expressing the equality of these ratios is called a proportion, e.g., (for details see Ratio). Proportionality is closely ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lune Of Hippocrates
In geometry, the lune of Hippocrates, named after Hippocrates of Chios, is a lune bounded by arcs of two circles, the smaller of which has as its diameter a chord spanning a right angle on the larger circle. Equivalently, it is a non-convex plane region bounded by one 180-degree circular arc and one 90-degree circular arc. It was the first curved figure to have its exact area calculated mathematically.. Translated from Postnikov's 1963 Russian book on Galois theory. History Hippocrates wanted to solve the classic problem of squaring the circle, i.e. constructing a square by means of straightedge and compass, having the same area as a given circle. He proved that the lune bounded by the arcs labeled ''E'' and ''F'' in the figure has the same area as triangle ''ABO''. This afforded some hope of solving the circle-squaring problem, since the lune is bounded only by arcs of circles. Heath concludes that, in proving his result, Hippocrates was also the first to prove that the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hippocrates Of Chios
Hippocrates of Chios ( grc-gre, Ἱπποκράτης ὁ Χῖος; c. 470 – c. 410 BC) was an ancient Greek mathematician, geometer, and astronomer. He was born on the isle of Chios, where he was originally a merchant. After some misadventures (he was robbed by either pirates or fraudulent customs officials) he went to Athens, possibly for litigation, where he became a leading mathematician. On Chios, Hippocrates may have been a pupil of the mathematician and astronomer Oenopides of Chios. In his mathematical work there probably was some Pythagorean influence too, perhaps via contacts between Chios and the neighboring island of Samos, a center of Pythagorean thinking: Hippocrates has been described as a 'para-Pythagorean', a philosophical 'fellow traveler'. "Reduction" arguments such as ''reductio ad absurdum'' argument (or proof by contradiction) have been traced to him, as has the use of power to denote the square of a line. W. W. Rouse Ball, A Short Account of the H ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]