Arcsine Distribution
   HOME
*





Arcsine Distribution
In probability theory, the arcsine distribution is the probability distribution whose cumulative distribution function involves the arcsine and the square root: :F(x) = \frac\arcsin\left(\sqrt x\right)=\frac+\frac for 0 ≤ ''x'' ≤ 1, and whose probability density function is :f(x) = \frac on (0, 1). The standard arcsine distribution is a special case of the beta distribution with ''α'' = ''β'' = 1/2. That is, if X is an arcsine-distributed random variable, then X \sim \bigl(\tfrac,\tfrac\bigr). By extension, the arcsine distribution is a special case of the Pearson type I distribution. The arcsine distribution appears in the Lévy arcsine law, in the Erdős arcsine law, and as the Jeffreys prior for the probability of success of a Bernoulli trial. Generalization Arbitrary bounded support The distribution can be expanded to include any bounded support from ''a'' ≤ ''x'' ≤ ''b'' by a si ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Arcsin Density
In mathematics, the inverse trigonometric functions (occasionally also called arcus functions, antitrigonometric functions or cyclometric functions) are the inverse functions of the trigonometric functions (with suitably restricted domains). Specifically, they are the inverses of the sine, cosine, tangent, cotangent, secant, and cosecant functions, and are used to obtain an angle from any of the angle's trigonometric ratios. Inverse trigonometric functions are widely used in engineering, navigation, physics, and geometry. Notation Several notations for the inverse trigonometric functions exist. The most common convention is to name inverse trigonometric functions using an arc- prefix: , , , etc. (This convention is used throughout this article.) This notation arises from the following geometric relationships: when measuring in radians, an angle of ''θ'' radians will correspond to an arc whose length is ''rθ'', where ''r'' is the radius of the circle. Thus in the unit circl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Erdős Arcsine Law
In number theory, the Erdős arcsine law, named after Paul Erdős in 1969, states that the prime divisors of a number have a distribution related to the arcsine distribution In probability theory, the arcsine distribution is the probability distribution whose cumulative distribution function involves the arcsine and the square root: :F(x) = \frac\arcsin\left(\sqrt x\right)=\frac+\frac for 0 ≤ ''x''  .... Specifically, say that the ''j''th prime factor ''p'' of a given number ''n'' (in the sorted sequence of distinct prime factors) is "small" when . Then, for any fixed parameter ''u'', in the limit as ''x'' goes to infinity, the proportion of the integers ''n'' less than ''x'' that have fewer than small prime factors converges to :\frac\arcsin. References * Number theory {{numtheory-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Classical Probability Density
The classical probability density is the probability density function that represents the likelihood of finding a particle in the vicinity of a certain location subject to a potential energy in a classical mechanical system. These probability densities are helpful in gaining insight into the correspondence principle and making connections between the quantum system under study and the classical limit. Mathematical background Consider the example of a simple harmonic oscillator initially at rest with amplitude . Suppose that this system was placed inside a light-tight container such that one could only view it using a camera which can only take a snapshot of what's happening inside. Each snapshot has some probability of seeing the oscillator at any possible position along its trajectory. The classical probability density encapsulates which positions are more likely, which are less likely, the average position of the system, and so on. To derive this function, consider the fac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Beamforming
Beamforming or spatial filtering is a signal processing technique used in sensor arrays for directional signal transmission or reception. This is achieved by combining elements in an antenna array in such a way that signals at particular angles experience constructive interference while others experience destructive interference. Beamforming can be used at both the transmitting and receiving ends in order to achieve spatial selectivity. The improvement compared with omnidirectional reception/transmission is known as the directivity of the array. Beamforming can be used for radio or sound waves. It has found numerous applications in radar, sonar, seismology, wireless communications, radio astronomy, acoustics and biomedicine. Adaptive beamforming is used to detect and estimate the signal of interest at the output of a sensor array by means of optimal (e.g. least-squares) spatial filtering and interference rejection. Techniques To change the directionality of the array when transm ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Uniform Distribution (continuous)
In probability theory and statistics, the continuous uniform distribution or rectangular distribution is a family of symmetric probability distributions. The distribution describes an experiment where there is an arbitrary outcome that lies between certain bounds. The bounds are defined by the parameters, ''a'' and ''b'', which are the minimum and maximum values. The interval can either be closed (e.g. , b or open (e.g. (a, b)). Therefore, the distribution is often abbreviated ''U'' (''a'', ''b''), where U stands for uniform distribution. The difference between the bounds defines the interval length; all intervals of the same length on the distribution's support are equally probable. It is the maximum entropy probability distribution for a random variable ''X'' under no constraint other than that it is contained in the distribution's support. Definitions Probability density function The probability density function of the continuous uniform distribution is: : f(x)=\begin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Independent And Identically Distributed Random Variables
In probability theory and statistics, a collection of random variables is independent and identically distributed if each random variable has the same probability distribution as the others and all are mutually independent. This property is usually abbreviated as ''i.i.d.'', ''iid'', or ''IID''. IID was first defined in statistics and finds application in different fields such as data mining and signal processing. Introduction In statistics, we commonly deal with random samples. A random sample can be thought of as a set of objects that are chosen randomly. Or, more formally, it’s “a sequence of independent, identically distributed (IID) random variables”. In other words, the terms ''random sample'' and ''IID'' are basically one and the same. In statistics, we usually say “random sample,” but in probability it’s more common to say “IID.” * Identically Distributed means that there are no overall trends–the distribution doesn’t fluctuate and all items in t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Confluent Hypergeometric Function
In mathematics, a confluent hypergeometric function is a solution of a confluent hypergeometric equation, which is a degenerate form of a hypergeometric differential equation where two of the three regular singularities merge into an irregular singularity. The term ''confluent'' refers to the merging of singular points of families of differential equations; ''confluere'' is Latin for "to flow together". There are several common standard forms of confluent hypergeometric functions: * Kummer's (confluent hypergeometric) function , introduced by , is a solution to Kummer's differential equation. This is also known as the confluent hypergeometric function of the first kind. There is a different and unrelated Kummer's function bearing the same name. * Tricomi's (confluent hypergeometric) function introduced by , sometimes denoted by , is another solution to Kummer's equation. This is also known as the confluent hypergeometric function of the second kind. * Whittaker functions (for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bernoulli Trial
In the theory of probability and statistics, a Bernoulli trial (or binomial trial) is a random experiment with exactly two possible outcomes, "success" and "failure", in which the probability of success is the same every time the experiment is conducted. It is named after Jacob Bernoulli, a 17th-century Swiss mathematician, who analyzed them in his ''Ars Conjectandi'' (1713). The mathematical formalisation of the Bernoulli trial is known as the Bernoulli process. This article offers an elementary introduction to the concept, whereas the article on the Bernoulli process offers a more advanced treatment. Since a Bernoulli trial has only two possible outcomes, it can be framed as some "yes or no" question. For example: *Is the top card of a shuffled deck an ace? *Was the newborn child a girl? (See human sex ratio.) Therefore, success and failure are merely labels for the two outcomes, and should not be construed literally. The term "success" in this sense consists in the result ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Jeffreys Prior
In Bayesian probability, the Jeffreys prior, named after Sir Harold Jeffreys, is a non-informative (objective) prior distribution for a parameter space; its density function is proportional to the square root of the determinant of the Fisher information matrix: : p\left(\vec\theta\right) \propto \sqrt.\, It has the key feature that it is invariant under a change of coordinates for the parameter vector \vec\theta. That is, the relative probability assigned to a volume of a probability space using a Jeffreys prior will be the same regardless of the parameterization used to define the Jeffreys prior. This makes it of special interest for use with ''scale parameters''. Reparameterization One-parameter case If \theta and \varphi are two possible parametrizations of a statistical model, and \theta is a continuously differentiable function of \varphi, we say that the prior p_\theta(\theta) is "invariant" under a reparametrization if :p_\varphi(\varphi) = p_\theta(\theta) \left, \frac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lévy Arcsine Law
Levy, Lévy or Levies may refer to: People * Levy (surname), people with the surname Levy or Lévy * Levy Adcock (born 1988), American football player * Levy Barent Cohen (1747–1808), Dutch-born British financier and community worker * Levy Fidelix (1951–2021), Brazilian conservative politician, businessman and journalist * Levy Gerzberg (born 1945), Israeli-American entrepreneur, inventor, and business person * Levy Li (born 1987), Miss Malaysia Universe 2008–2009 * Levy Mashiane (born 1996), South African footballer * Levy Matebo Omari (born 1989), Kenyan long-distance runner * Levy Mayer (1858–1922), American lawyer * Levy Middlebrooks (born 1966), American basketball player * Levy Mokgothu, South African footballer * Levy Mwanawasa (1948–2008), President of Zambia from 2002 * Levy Nzoungou (born 1998), Congolese-French rugby player, playing in England * Levy Rozman (born 1995), American chess IM, coach, and content creator * Levy Sekgapane (born 1990), South Af ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Arcsin Cdf
In mathematics, the inverse trigonometric functions (occasionally also called arcus functions, antitrigonometric functions or cyclometric functions) are the inverse functions of the trigonometric functions (with suitably restricted domains). Specifically, they are the inverses of the sine, cosine, tangent, cotangent, secant, and cosecant functions, and are used to obtain an angle from any of the angle's trigonometric ratios. Inverse trigonometric functions are widely used in engineering, navigation, physics, and geometry. Notation Several notations for the inverse trigonometric functions exist. The most common convention is to name inverse trigonometric functions using an arc- prefix: , , , etc. (This convention is used throughout this article.) This notation arises from the following geometric relationships: when measuring in radians, an angle of ''θ'' radians will correspond to an arc whose length is ''rθ'', where ''r'' is the radius of the circle. Thus in the u ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Pearson Distribution
The Pearson distribution is a family of continuous probability distribution, continuous probability distributions. It was first published by Karl Pearson in 1895 and subsequently extended by him in 1901 and 1916 in a series of articles on biostatistics. History The Pearson system was originally devised in an effort to model visibly skewness, skewed observations. It was well known at the time how to adjust a theoretical model to fit the first two cumulants or moment (mathematics), moments of observed data: Any probability distribution can be extended straightforwardly to form a location-scale family. Except in pathological (mathematics), pathological cases, a location-scale family can be made to fit the observed mean (mathematics), mean (first cumulant) and variance (second cumulant) arbitrarily well. However, it was not known how to construct probability distributions in which the skewness (standardized third cumulant) and kurtosis (standardized fourth cumulant) could be adjuste ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]