Adaptive Rejection Sampling
   HOME
*





Adaptive Rejection Sampling
In numerical analysis and computational statistics, rejection sampling is a basic technique used to generate observations from a distribution. It is also commonly called the acceptance-rejection method or "accept-reject algorithm" and is a type of exact simulation method. The method works for any distribution in \mathbb^m with a density. Rejection sampling is based on the observation that to sample a random variable in one dimension, one can perform a uniformly random sampling of the two-dimensional Cartesian graph, and keep the samples in the region under the graph of its density function. Note that this property can be extended to ''N''-dimension functions. Description To visualize the motivation behind rejection sampling, imagine graphing the density function of a random variable onto a large rectangular board and throwing darts at it. Assume that the darts are uniformly distributed around the board. Now remove all of the darts that are outside the area under the curve. The r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computational Statistics
Computational statistics, or statistical computing, is the bond between statistics and computer science. It means statistical methods that are enabled by using computational methods. It is the area of computational science (or scientific computing) specific to the mathematical science of statistics. This area is also developing rapidly, leading to calls that a broader concept of computing should be taught as part of general statistical education. As in traditional statistics the goal is to transform raw data into knowledge, Wegman, Edward J. Computational Statistics: A New Agenda for Statistical Theory and Practice. Journal of the Washington Academy of Sciences', vol. 78, no. 4, 1988, pp. 310–322. ''JSTOR'' but the focus lies on computer intensive statistical methods, such as cases with very large sample size and non-homogeneous data sets. The terms 'computational statistics' and 'statistical computing' are often used interchangeably, although Carlo Lauro (a former presid ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Inverse Transform Sampling
Inverse transform sampling (also known as inversion sampling, the inverse probability integral transform, the inverse transformation method, Smirnov transform, or the golden ruleAalto University, N. Hyvönen, Computational methods in inverse problems. Twelfth lecture https://noppa.tkk.fi/noppa/kurssi/mat-1.3626/luennot/Mat-1_3626_lecture12.pdf) is a basic method for pseudo-random number sampling, i.e., for generating sample numbers at random from any probability distribution given its cumulative distribution function. Inverse transformation sampling takes uniform samples of a number u between 0 and 1, interpreted as a probability, and then returns the largest number x from the domain of the distribution P(X) such that P(-\infty , e.g. from U \sim \mathrm ,1 #Find the inverse of the desired CDF, e.g. F_X^(x). # Compute X=F_X^(u). The computed random variable X has distribution F_X(x). Expressed differently, given a continuous uniform variable U in ,1/math> and an invertible cum ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pseudo-random Number Sampling
Non-uniform random variate generation or pseudo-random number sampling is the numerical practice of generating pseudo-random numbers (PRN) that follow a given probability distribution. Methods are typically based on the availability of a uniformly distributed PRN generator. Computational algorithms are then used to manipulate a single random variate, ''X'', or often several such variates, into a new random variate ''Y'' such that these values have the required distribution. The first methods were developed for Monte-Carlo simulations in the Manhattan project, published by John von Neumann in the early 1950s. Finite discrete distributions For a discrete probability distribution with a finite number ''n'' of indices at which the probability mass function ''f'' takes non-zero values, the basic sampling algorithm is straightforward. The interval [0, 1) is divided in ''n'' intervals [0, ''f''(1)), [''f''(1), ''f''(1) + ''f''(2)), ... The width of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ratio Of Uniforms
The ratio of uniforms is a method initially proposed by Kinderman and Monahan in 1977 for pseudo-random number sampling, that is, for drawing random samples from a statistical distribution. Like rejection sampling and inverse transform sampling, it is an exact simulation method. The basic idea of the method is to use a change of variables to create a bounded set, which can then be sampled uniformly to generate random variables following the original distribution. One feature of this method is that the distribution to sample is only required to be known up to an unknown multiplicative factor, a common situation in computational statistics and statistical physics. Motivation A convenient technique to sample a statistical distribution is rejection sampling. When the probability density function of the distribution is bounded and has finite support, one can define a bounding box around it (a uniform proposal distribution), draw uniform samples in the box and return only the x coord ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Inverse Transform Sampling
Inverse transform sampling (also known as inversion sampling, the inverse probability integral transform, the inverse transformation method, Smirnov transform, or the golden ruleAalto University, N. Hyvönen, Computational methods in inverse problems. Twelfth lecture https://noppa.tkk.fi/noppa/kurssi/mat-1.3626/luennot/Mat-1_3626_lecture12.pdf) is a basic method for pseudo-random number sampling, i.e., for generating sample numbers at random from any probability distribution given its cumulative distribution function. Inverse transformation sampling takes uniform samples of a number u between 0 and 1, interpreted as a probability, and then returns the largest number x from the domain of the distribution P(X) such that P(-\infty , e.g. from U \sim \mathrm ,1 #Find the inverse of the desired CDF, e.g. F_X^(x). # Compute X=F_X^(u). The computed random variable X has distribution F_X(x). Expressed differently, given a continuous uniform variable U in ,1/math> and an invertible cum ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Exponential Distribution
In probability theory and statistics, the exponential distribution is the probability distribution of the time between events in a Poisson point process, i.e., a process in which events occur continuously and independently at a constant average rate. It is a particular case of the gamma distribution. It is the continuous analogue of the geometric distribution, and it has the key property of being memoryless. In addition to being used for the analysis of Poisson point processes it is found in various other contexts. The exponential distribution is not the same as the class of exponential families of distributions. This is a large class of probability distributions that includes the exponential distribution as one of its members, but also includes many other distributions, like the normal, binomial, gamma, and Poisson distributions. Definitions Probability density function The probability density function (pdf) of an exponential distribution is : f(x;\lambda) = \begin \lambda ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Logarithmically Concave Function
In convex analysis, a non-negative function is logarithmically concave (or log-concave for short) if its domain is a convex set, and if it satisfies the inequality : f(\theta x + (1 - \theta) y) \geq f(x)^ f(y)^ for all and . If is strictly positive, this is equivalent to saying that the logarithm of the function, , is concave; that is, : \log f(\theta x + (1 - \theta) y) \geq \theta \log f(x) + (1-\theta) \log f(y) for all and . Examples of log-concave functions are the 0-1 indicator functions of convex sets (which requires the more flexible definition), and the Gaussian function. Similarly, a function is '' log-convex'' if it satisfies the reverse inequality : f(\theta x + (1 - \theta) y) \leq f(x)^ f(y)^ for all and . Properties * A log-concave function is also quasi-concave. This follows from the fact that the logarithm is monotone implying that the superlevel sets of this function are convex. * Every concave function that is nonnegative on its d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gibbs Sampling
In statistics, Gibbs sampling or a Gibbs sampler is a Markov chain Monte Carlo (MCMC) algorithm for obtaining a sequence of observations which are approximated from a specified multivariate probability distribution, when direct sampling is difficult. This sequence can be used to approximate the joint distribution (e.g., to generate a histogram of the distribution); to approximate the marginal distribution of one of the variables, or some subset of the variables (for example, the unknown parameters or latent variables); or to compute an integral (such as the expected value of one of the variables). Typically, some of the variables correspond to observations whose values are known, and hence do not need to be sampled. Gibbs sampling is commonly used as a means of statistical inference, especially Bayesian inference. It is a randomized algorithm (i.e. an algorithm that makes use of random numbers), and is an alternative to deterministic algorithms for statistical inferenc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Metropolis Sampling
A metropolis () is a large city or conurbation which is a significant economic, political, and cultural center for a country or region, and an important hub for regional or international connections, commerce, and communications. A big city belonging to a larger urban agglomeration, but which is not the core of that agglomeration, is not generally considered a metropolis but a part of it. The plural of the word is ''metropolises'', although the Latin plural is ''metropoles'', from the Greek ''metropoleis'' (). For urban centers outside metropolitan areas that generate a similar attraction on a smaller scale for their region, the concept of the regiopolis ("regio" for short) was introduced by urban and regional planning researchers in Germany in 2006. Etymology Metropolis (μητρόπολις) is a Greek word, coming from μήτηρ, ''mḗtēr'' meaning "mother" and πόλις, ''pólis'' meaning "city" or "town", which is how the Greek colonies of antiquity referred to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Curse Of Dimensionality
The curse of dimensionality refers to various phenomena that arise when analyzing and organizing data in high-dimensional spaces that do not occur in low-dimensional settings such as the three-dimensional physical space of everyday experience. The expression was coined by Richard E. Bellman when considering problems in dynamic programming. Dimensionally cursed phenomena occur in domains such as numerical analysis, sampling, combinatorics, machine learning, data mining and databases. The common theme of these problems is that when the dimensionality increases, the volume of the space increases so fast that the available data become sparse. In order to obtain a reliable result, the amount of data needed often grows exponentially with the dimensionality. Also, organizing and searching data often relies on detecting areas where objects form groups with similar properties; in high dimensional data, however, all objects appear to be sparse and dissimilar in many ways, which prevents co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ratio Of Uniforms
The ratio of uniforms is a method initially proposed by Kinderman and Monahan in 1977 for pseudo-random number sampling, that is, for drawing random samples from a statistical distribution. Like rejection sampling and inverse transform sampling, it is an exact simulation method. The basic idea of the method is to use a change of variables to create a bounded set, which can then be sampled uniformly to generate random variables following the original distribution. One feature of this method is that the distribution to sample is only required to be known up to an unknown multiplicative factor, a common situation in computational statistics and statistical physics. Motivation A convenient technique to sample a statistical distribution is rejection sampling. When the probability density function of the distribution is bounded and has finite support, one can define a bounding box around it (a uniform proposal distribution), draw uniform samples in the box and return only the x coord ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Adaptive Rejection Sampling
In numerical analysis and computational statistics, rejection sampling is a basic technique used to generate observations from a distribution. It is also commonly called the acceptance-rejection method or "accept-reject algorithm" and is a type of exact simulation method. The method works for any distribution in \mathbb^m with a density. Rejection sampling is based on the observation that to sample a random variable in one dimension, one can perform a uniformly random sampling of the two-dimensional Cartesian graph, and keep the samples in the region under the graph of its density function. Note that this property can be extended to ''N''-dimension functions. Description To visualize the motivation behind rejection sampling, imagine graphing the density function of a random variable onto a large rectangular board and throwing darts at it. Assume that the darts are uniformly distributed around the board. Now remove all of the darts that are outside the area under the curve. The r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]